嗯,这篇关于局部收敛性的适合那些想深入了解方程求根方法的人。是针对 Newton 迭代法的收敛性,作者通过清晰的步骤,证明了在根附近具有二阶连续导数的情况下,Newton 方法可以保证至少是平方收敛的。挺有用的,尤其是你在做数值计算时,想提高迭代速度或精度,可以借此深入理解其背后的数学原理。除了基础的理论,文中还分享了一些相关的资源链接,像是改进 Newton 方法收敛性的资料,或者其他常见的迭代法优化文章,都挺值得一读的。如果你对数值方法有兴趣,不妨看看这些链接,应该能为你不少。