数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
12
2024-05-31
数据挖掘:知识与创新的全景
本书涵盖了数据挖掘领域的关键概念和前沿技术。第二版内容全面升级,纳入了数据挖掘的最新研究成果,如流、时序和序列数据挖掘,以及时间空间、多媒体、文本和网络数据挖掘。适合数据挖掘和知识发现领域的从业者、研究人员和开发人员参考。
数据挖掘
11
2024-04-30
数据挖掘基础知识与应用
数据挖掘是一种新兴的多学科交叉应用领域,用于从庞大且可能混乱的数据集中提取有意义的模式和知识。它在各个行业发挥着日益重要的作用,帮助决策制定。本书涵盖了数据挖掘的基本原理、概念和技术,重点关注如何从嘈杂、不完整甚至矛盾的数据中挖掘知识。
数据挖掘
13
2024-05-19
数据挖掘与知识发现综述
本书详尽探讨了数据挖掘与知识发现领域的基础理论及研究方法。阐述了KDD和数据挖掘的概念,分析了数据挖掘的目标和知识发现的过程,深入探讨了相关领域和实际应用。
数据挖掘
12
2024-09-25
数据挖掘中关联规则挖掘
关联规则挖掘是一种在交易数据、关系数据等信息载体中寻找频繁模式、关联、相关性或因果结构的方法。
算法与数据结构
21
2024-04-30
关联挖掘数据挖掘的核心技术与应用实例
什么是关联挖掘? 关联规则挖掘是一种通过分析交易数据、关系数据或其他信息源,发现项目集合或对象集合之间频繁模式、关联关系、相关性或因果结构的技术。应用领域包括购物篮分析、交叉销售、产品目录设计、loss-leader分析、聚集、分类等。 实例规则格式为:“Body ® Head [support, confidence]”,例如: buys(x, “diapers”) ® buys(x, “beers”) [0.5%, 60%],意指购买尿布与啤酒的关联规则。此外,还有类似“major(x, “CS”) ^ takes(x, “DB”) ® grade(x, “A”) [1%, 75%]”的规
算法与数据结构
7
2024-10-25
关联规则数据挖掘算法
Apriori算法Apriori算法是关联规则数据挖掘算法的代表,它使用迭代的方法生成候选频繁项集,并使用支持度和置信度阈值来过滤非频繁项集。
Apriori算法的改进Apriori算法的改进版本包括:- FP-Growth算法:使用了一种基于FP树的数据结构,可以更高效地生成频繁项集。- Eclat算法:采用了一种基于集合论的方法,可以并行生成频繁项集。- PrefixSpan算法:专用于序列数据,可以发现序列模式。
数据挖掘
11
2024-05-25
常见数据挖掘算法与关联规则分析
数据挖掘是从大量数据中提取有价值信息的过程,在信息技术中具有关键作用。关联规则作为其中一种核心算法,在市场篮子分析、推荐系统和医学诊断等领域广泛应用。将详细介绍关联规则的概念及其在数据挖掘中的应用。关联规则挖掘的目标是发现数据库中项集之间的有趣关系,例如“顾客购买牛奶,可能也购买面包”。通过支持度和置信度衡量规则的可靠性,并介绍了Apriori、FP-Growth和Eclat等常见算法的工作原理和优劣。
数据挖掘
12
2024-07-29
关联规则挖掘路线图-数据挖掘概念、技术--关联1
关联规则挖掘包括布尔与定量关联(基于数据类型处理)。例如:buys(x, “SQLServer”) ^ buys(x, “DMBook”) -> buys(x, “DBMiner”) [0.2%, 60%]。此外,还有单维与多维关联,单层与多层分析。例如:age(x, “30..39”) ^ income(x, “42..48K”) -> buys(x, “PC”) [1%, 75%]。进一步的扩展涉及相关性和因果分析。需要注意的是,关联并不一定意味着因果关系。还有最大模式和闭合相集的概念,以及如“小东西”销售促发“大家伙”买卖的添加约束。
算法与数据结构
16
2024-07-12