主要了基于网格密度的聚类算法,了传统聚类算法在数据时的速度慢和边界模糊问题。其实,随着数据量的不断增加,能快速有效地对数据进行划分变得重要。这种算法通过网格的方式提高了数据效率,适合在数据量大、维度高的场景下使用。你可以用它来优化数据速度,避免传统聚类方法的瓶颈。推荐学习下相关的密度聚类算法,比如DBSCAN
、密度峰值聚类
等,掌握了这些可以帮你更好地复杂数据集哦!
基于网格密度的聚类算法研究
相关推荐
基于密度与网格的快速聚类算法
密度和网格结合的聚类思路,挺适合大数据集的。先把数据集网格化,根据单位格子的密度和到高密度区的距离,挑出聚类中心。逻辑不复杂,思路也清晰,和传统的DBSCAN、密度峰值聚类有点像,但运行速度快不少,尤其大数据量下挺有优势。
网格化数据集空间,避免一上来就全局点对点计算,性能提升还挺。你可以理解为先粗筛一遍,把低密度区直接忽略,只关注那些比较“热闹”的网格。
确定簇心时,算法考虑两个指标:一个是密度高不高,一个是离其它高密度区远不远。这样选出来的点,不容易被噪声干扰,聚类效果还不错。
密度划分的时候,也挺简单暴力。直接根据网格密度关系,把剩下的点归到最近的簇心里。整体聚类过程短,响应也快。执行时
数据挖掘
0
2025-06-30
基于密度树的网格快速聚类算法
该算法将网格原理应用于基于密度树的聚类算法,提高效率,降低I/O开销。
数据挖掘
15
2024-05-20
基于拓扑聚类的密度聚类算法研究
基于密度的聚类算法不少,像你平时用的 DBSCAN 啦,密度峰值聚类 啦,都挺经典的。但说实话,这篇《基于拓扑聚类的密度聚类算法研究》把它们背后的概念整合得还挺清楚的。拓扑结构的思路其实蛮有意思,把簇看作一种“连通”的结构,挺像用图做聚类时的感觉。对老 DBSCAN 用户来说,能换个视角重新理解密度连通,嗯,挺值的。文章里还提了个新算法,用拓扑改进密度聚类,理论上说效果比传统 DBSCAN 更稳,对一些边界模糊的簇聚得还不错。代码细节没展开说太多,但思路清晰,有兴趣的你可以顺手看看配套的源码资源,像这个 密度峰值聚类算法源码 或 Python GUI 版,都还蛮实用的。如果你之前用密度类聚类感
数据挖掘
0
2025-07-01
基于网格的聚类
基于网格的聚类算法是一种能有效发现任意形状簇的无监督分类算法,克服了基于划分和层次聚类方法的局限性。网格方法将数据空间划分为网格,将落在同一网格中的数据点视为同一簇。常见的基于网格的聚类算法包括:- CLIQUE- WaveCluster
数据挖掘
16
2024-05-01
基于网格的聚类算法优化及其应用探讨
介绍了典型算法,如CLIQUE聚类算法和WaveCluster聚类算法等。在机器学习中,聚类算法是一种无监督分类算法,包括基于划分的聚类算法(如kmeans)、基于层次的聚类算法(如BIRCH)、基于密度的聚类算法(如DBScan)和基于网格的聚类算法。基于网格的方法能够更好地处理非凸形状的簇,并降低计算复杂度。STING算法采用多分辨率网格,通过层次结构将空间分割为不同大小的单元,查询算法通过比较每个单元格的属性值与查询条件,逐渐缩小范围,最终找到满足条件的簇。CLIQUE算法结合了密度和网格思想,能够发现任意形状的簇,并处理高维数据。WaveCluster算法使用小波分析改进了聚类边界检测
数据挖掘
7
2024-10-12
基于高斯核的距离和密度聚类算法GDD聚类-matlab开发
请引用:Emre Güngör,Ahmet Özmen,使用高斯核的基于距离和密度的聚类算法,发表于《Expert Systems with Applications》第69卷,2017年,第10-20页,ISSN 0957-4174。详细信息请参阅原始文章链接:https://doi.org/10.1016/j.eswa.2016.10.022 (http://www.sciencedirect.com/science/article/pii/S095741630553X)。对于聚类数据集和/或形状集,您可以查看:https://cs.joensuu.fi/sipu/datasets/
Matlab
13
2024-08-05
密度峰值聚类算法源码
该代码是基于 Rodriguez A, Laio A 发表在 Science 上的论文中提出的密度聚类算法实现。
算法与数据结构
12
2024-05-25
基于网格的最小生成树聚类算法
基于网格的最小生成树聚类算法,思路挺巧的,适合你在大数据时用来做聚类优化。它不直接对所有点跑 MST,而是先把数据切成网格块,只挑高密度的来,省事不少。再加上利用最小生成树这种图结构,能自动抓出各种奇形怪状的簇,也比传统 k-means 那种对圆形簇偏爱的方式聪明多了。你要是项目里数据多、还不规整,这种方式值得一试。
数据挖掘
0
2025-06-23
DBSCAN Matlab实现密度聚类算法
DBSCAN 的密度聚类思路,蛮适合那种形状不规则、还有点噪声的数据。你不用预先设定聚类个数,只要定个ε和MinPts就能搞定,挺适合初学者上手的。Matlab 版本的实现比较清晰,变量名啥的都能看懂,逻辑也不绕。基本结构就是循环+判断,搞懂核心对象和边界点这两个概念就能顺着走下去了。资源包叫密度聚类 20160407,里头还有 PPT,讲原理也讲应用场景,像是地理数据、图像、社交图谱这些都有提到,算是比较全面了。还有一点挺好的,运行效果直接可视化,能看到聚类是怎么分的,这对理解DBSCAN有。代码里你只需要设定一下ε和MinPts,其余的交给算法来搞定,效率还不错。如果你平时用 Matlab
算法与数据结构
0
2025-06-30