- 统计方法:基于数据的数量特征,推断规律。
- 粗糙集:一种模糊集,用于规则归纳、分类和聚类。
- 可视化:将数据转化为图形,便于理解。
- 传统机器学习:包括符号学习和连接学习。
- 知识发现与数据挖掘。
人工智能导论知识发现方法概述
相关推荐
数据挖掘与知识发现综述
本书详尽探讨了数据挖掘与知识发现领域的基础理论及研究方法。阐述了KDD和数据挖掘的概念,分析了数据挖掘的目标和知识发现的过程,深入探讨了相关领域和实际应用。
数据挖掘
12
2024-09-25
KDD:人工智能研究热点
KDD 已成为人工智能领域的研究热点,广泛应用于过程控制、信息管理、商业、医疗和金融等领域。作为大规模数据库中先进的数据分析工具,KDD 研究是数据库和人工智能领域的研究重点。
数据挖掘
18
2024-05-25
人工智能算法演示
有限状态机、遗传算法、神经网络等人工智能算法演示程序及源代码。
算法与数据结构
15
2024-05-26
数据挖掘算法和知识发现
掌握数据挖掘的基础概念、常用算法以及知识发现的方法和案例。
数据挖掘
12
2024-05-26
人工智能现代方法第三版
这本书涵盖了机器学习、自然语言处理、数据挖掘和信息检索等智能领域的重要知识,是学习这些领域的重要参考书籍。
数据挖掘
14
2024-09-13
探索知识宝藏:知识发现与知识工程课件
探索知识宝藏:知识发现与知识工程课件
这份课件资料,将带领计算机专业的学生们,深入了解知识发现与知识工程领域的奥秘。从数据中获取知识,利用知识解决问题,开启一段充满智慧的探索之旅。
课件内容涵盖:
知识发现的核心概念与方法
知识工程的原理与技术
知识表示与推理
机器学习在知识发现中的应用
知识管理与知识服务系统
通过学习,你将能够:
掌握知识发现与知识工程的基本理论和方法
运用相关技术进行知识获取、分析和应用
设计和开发智能化的知识管理系统
开启智慧之门,探索知识的无限可能!
数据挖掘
20
2024-04-29
FAKE GAME:自动化知识发现工具
FAKE GAME 利用自然演化原理,自动生成数据挖掘模型。它集成了多种预处理、优化和可视化方法,简化知识发现流程,让从数据中提取知识变得轻而易举。
数据挖掘
15
2024-04-30
人工智能领域中的知识表达方式探索与应用
在人工智能领域,知识的表达方法是解决问题的核心之一。本章详细探讨了多种不同的知识表达技术,帮助AI系统理解和处理复杂的问题。其中介绍了状态空间法,这是一种广泛应用于问题求解的技术,通过描述问题的状态和操作符来构建问题的状态空间。状态空间法的应用举例包括解决迷宫问题或下棋问题,每个状态代表不同的问题阶段,操作符描述了状态之间的转换。另外,讨论了问题归约法,通过逐步分解为一系列子问题来解决复杂问题,如梵塔难题。本章还提及了谓词逻辑法、语义网络法等其他重要的知识表示方法,这些方法在AI系统中起到关键作用,选择合适的表达方式取决于问题的性质和解决策略。
算法与数据结构
9
2024-10-10
计算智能人工智能分支深度剖析
计算智能是人工智能的一个分支,涉及神经网络、模糊逻辑、进化计算和人工生命等领域。其研究和发展反映了现代科学技术多学科交叉与集成的重要趋势。计算智能系统具有计算适应性、容错性和接近人类速度与误差率的特点。神经计算则涵盖了人工神经网络的设计、训练和应用,具有并行处理、非线性映射和通过训练进行学习等特性。计算智能与人工智能的关系紧密但又有所区别,前者依赖于数值数据而不是知识精品。其应用广泛,包括模糊逻辑、进化计算、人工生命、机器人控制、自动控制、图像识别和自然语言处理等领域。
算法与数据结构
10
2024-07-31