Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
RSADRs:利用缺失值的基于粗糙集的FAERS数据库ADR信号检测的Python实现
数据挖掘
23
ZIP
9.66KB
2024-05-25
#FAERS
#药物不良反应
#自发报告系统
#缺失值
#粗糙集
#数据挖掘
#Python实现
本书作者:Phate
借助自发报告的ADR信号探查FAERS数据是我们的目标,而该项目作为系统的一部分,然而FAERS自发报告系统中缺失值的存在,为数据挖掘带来极大困难。
相关推荐
基于粗糙集的数据挖掘技术探索
基于粗糙集理论的数据挖掘方法正在被广泛研究和应用。这一方法不仅能够处理数据中的不确定性和不完整性,还能发现隐藏在数据背后的有价值信息。研究者们通过改进算法和优化模型,不断提升其在各个领域的应用效果和准确度。未来,随着技术的进步和理论的深入,基于粗糙集的数据挖掘技术有望在更广泛的领域展现其潜力。
数据挖掘
8
2024-08-03
基于粗糙集的文本分类研究
文本分类里的维度问题,真的是老大难了。高维特征又多又乱,模型跑得慢不说,准确率还不稳定。粗糙集理论就挺能这个问题的,专门干降维这种脏活累活,精度还不掉。文中讲得挺全,从上近似、下近似这些基础概念,到怎么做知识约简,都说得清清楚楚。文本特征一多,像VSM 模型那种传统方法就开始吃力了。你用过支持向量机或KNN的应该懂,一不小心就爆内存。用粗糙集前先做停用词过滤和分词,后面再靠它筛关键特征,效率能提升不少。我觉得这篇 PDF 最实用的地方在后半部分,做了个案例对比实验,直接把传统方法跟粗糙集做的模型效果摆一块,哪种更稳一目了然。你要是项目里正好卡在特征维度上,建议真看看。顺手还能参考下里面推荐的特
数据挖掘
0
2025-07-01
基于粗糙集属性约简的图像隐藏信息检测新方法(2008)
统计分析方法是图像隐藏信息检测中常用的手段,相较于特定隐写分析,其更为灵活,能够快速适应新的或未知的隐写算法。为解决高维特征属性问题,采用粗糙集属性约简技术,有效降低数据规模。实验结果显示,该方法在不影响分类精度的情况下显著提升了检测速度。
统计分析
17
2024-08-30
基于粗糙集的条件信息熵权重方法
该方法利用粗糙集理论处理不确定信息,通过计算条件信息熵来量化属性重要性,进而确定权重。
算法与数据结构
17
2024-05-27
基于MapReduce的并行粗糙集知识获取方法
MapReduce 的并行粗糙集方法,真的是大数据场景下的一个救命工具。粗糙集不确定信息还挺拿手的,但以前大数据集,效率老上不去。现在配合 MapReduce,用分布式方式跑粗糙集算法,响应快、扩展性也不错,挺适合用在复杂数据任务里的。 粗糙集的知识获取方法,结合了 MapReduce 的分布式优势,把数据切成小块分别,再合并结果。简单说,Map 做拆分,Reduce 做合并,整个流程就高效多了。你不用担心数据量有多大,分布式来分担压力。 大数据挖掘讲究的就是快和稳,这套方法在实验里表现还挺靠谱的,不管数据是几十万还是上百万条,性能表现都蛮稳定。粗糙集在分类、约简上也有用武之地,适合你想找数据
数据挖掘
0
2025-06-17
基于扩展粗糙集的近似概念格规则挖掘
粗糙集与概念格作为知识发现和数据挖掘的有效工具,已在诸多领域展现出应用价值。本研究在对二者理论基础进行深入研究的基础上,提出了一种利用扩展粗糙集模型改进概念格近似性的方法。 该方法通过引入 β-多数蕴涵关系,实现了概念格外延的近似合并,并构建了近似概念格 (ACL)。在此基础上,进一步提出了概念格粗糙近似和规则挖掘算法 (LCRA)。UCI 机器学习数据库测试结果验证了该算法的可行性和有效性。
数据挖掘
15
2024-05-23
基于粗糙集理论的煤矿瓦斯预测技术优化
针对煤矿瓦斯灾害的特点,提出了利用粗糙集理论进行瓦斯灾害预测的方法。分析了瓦斯灾害的特征,并建立了相应的知识库。应用粗糙集理论构建了煤矿瓦斯灾害预测的数据挖掘模型,讨论了模型中的属性关系,并采用信息熵准则对预测方法进行了优化。通过实际案例验证了粗糙集理论在瓦斯灾害预测中的有效性和实用性。
数据挖掘
12
2024-07-16
基于模糊粗糙集的企业财务报告舞弊检测研究(2011年)
企业财务报告舞弊检测方法的研究一直是财务管理领域的热点问题,目前的研究方法包括统计学、数据挖掘技术和模糊神经网络等。利用模糊粗糙集方法对财务指标进行约简并赋予权重,建立综合评价体系,进而构建企业财务报告舞弊检测模型,为解决财务报告舞弊问题提供新的思路。
数据挖掘
7
2024-07-20
基于粗糙集的数据挖掘在教学评价中的应用
粗糙集的数据挖掘在教学评价里的应用,思路挺清晰的。数据预、属性约简、规则提取这一套流程,逻辑上还蛮顺的。尤其是用了两种约简算法,一个属性,一个搞属性值,效率不低。 粗糙集的约简算法用起来感觉挺方便,像是用分明矩阵做属性约简那段,代码也不复杂,Matlab实现起来也挺直观。你想去掉冗余、提炼关键因素,这招挺好使。 教学评价数据这种结构化的表格挺适合下手挖掘。你只要把决策表准备好,扔给粗糙集一套算法,基本就能摸清哪些指标是影响效果的“硬通货”。 如果你想深入玩玩约简和规则提取的细节,可以去看看那份粗糙集属性约简课件,讲得还不错;或者这篇基于粗糙集的数据挖掘技术探索,案例挺多。 规则提取这块也有点意
数据挖掘
0
2025-07-03