提出了基于影响函数的异常数据检测方法,该方法通过投影分析来分离观测数据中的异常成分,有效消除脉冲噪声。实验结果验证了该方法在异常数据检测方面的可靠性和有效性。
基于 ICA 的异常数据挖掘算法研究
相关推荐
基于信息熵的异常数据挖掘算法解析
信息熵是粒计算理论中用于度量不确定信息的重要工具之一。现有的异常数据挖掘算法多集中于处理确定性的异常数据。然而,关于使用信息熵来度量不确定性数据以实现异常数据挖掘的研究相对较少。基于此,在引入信息熵概念的基础上,定义了基于信息熵的异常度,用以衡量数据之间的异常程度,并提出了一种基于信息熵的异常数据挖掘算法。该算法能够高效地进行异常数据的挖掘。理论分析和实验结果均证明了该算法的有效性和可行性。
数据挖掘
18
2024-10-26
异常数据在数据挖掘中的重要性及应用
现有数据挖掘研究大多集中于发现适用于大部分数据的常规模式。在许多应用领域中,异常数据通常被视为噪音而被忽略。然而,在某些应用领域中,识别和理解异常数据却是许多工作的关键。异常数据不仅能够带来新的视角,例如在欺诈检测中可能暗示欺诈行为的发生,在入侵检测中可能暗示入侵行为的发生。
数据挖掘
13
2024-09-22
基于机器学习的数据挖掘算法研究
数据挖掘是从海量数据中提取有价值知识的过程,其中决策树作为一种广泛应用的机器学习算法,被广泛应用于实际问题中。本研究详细探讨了基于决策树的数据挖掘算法的技术原理、实现方法及其在不同领域的应用。决策树通过一系列规则划分数据集,构建分类模型,适用于信用评估、医疗诊断等多个领域。研究还探讨了决策树算法的优势和局限性,以及相关的改进策略如CART和随机森林等。
数据挖掘
16
2024-07-20
数据挖掘分类算法研究
数据挖掘分类算法的研究这篇论文全面阐述了数据挖掘中分类算法的研究进展。
数据挖掘
22
2024-04-30
基于网络数据挖掘的研究
随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
数据挖掘
8
2024-09-13
基于常用算法的计算机数据挖掘研究
本研究探讨了几种常见数据挖掘算法,并深入比较了它们的性能和适用场景。研究内容涵盖算法原理、实现方法以及在实际数据集上的应用。通过实验结果分析,揭示了不同算法在效率、准确率等方面的优劣,为数据挖掘技术的实际应用提供参考。
数据挖掘
11
2024-05-12
探索数据挖掘:聚类算法的比较研究
这份关于数据挖掘中聚类算法的比较研究论文,带你深入了解不同算法的优缺点和适用场景。
数据挖掘
15
2024-05-20
基于数据挖掘的选线判据改进研究
针对传统选线判据无法精确识别干扰信号、可能导致频繁误跳闸的问题,本研究利用数据挖掘中的K-means算法进行了改进。通过对某支路历史数据的聚类分析,成功区分漏电真零序电流与干扰信号,显著提升了选线判据的准确性。
数据挖掘
16
2024-07-13
基于优化数据集结构的高效用数据挖掘算法研究
高效用项集挖掘 (High-Utility Itemset Mining, HUIM) 作为数据挖掘领域的重要任务之一,与频繁项集挖掘 (Frequent Itemset Mining, FIM) 不同,HUIM 在挖掘过程中会综合考虑数量和价值等因素。
数据挖掘
18
2024-05-23