随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
基于网络数据挖掘的研究
相关推荐
数据挖掘中的神经网络算法研究
随着数据库技术的成熟和数据应用的普及,大规模数据库和数据仓库的建立,人们开始面对“数据丰富,但信息贫乏”的挑战。数据挖掘技术从海量数据中挖掘出隐含的、先前未知的、对决策有潜在价值的知识和规则,这些规则揭示了数据库中一组对象之间的特定关系,为经营决策、金融预测等提供依据。专注于神经网络算法在数据挖掘中的应用问题,这种算法具有高准确率和强大的抗噪声能力。SQL Server 2005提供了一种简单的方式来应用神经网络算法,适用于SQL Management Studio、BI Dev Studio等环境,用于创建神经网络挖掘模型。
数据挖掘
16
2024-07-16
基于网络的电力营销数据挖掘系统
为了充分利用供电公司在生产和营销过程中产生的大量数据,并从中提取有价值信息,协助运营商实现有效市场营销和客户服务,结合数据仓库、数据挖掘技术以及在线分析处理(OLAP)技术,提出了一种基于网络的供电公司电力营销数据挖掘系统。该系统采用三层B/S体系结构,包括业务逻辑层、应用服务层和数据存取层,并基于模型-视图-控制器(MVC)设计模式,具备跨平台、可扩展和易维护等优点,具有广阔的应用前景。
数据挖掘
17
2024-08-19
基于数据挖掘的选线判据改进研究
针对传统选线判据无法精确识别干扰信号、可能导致频繁误跳闸的问题,本研究利用数据挖掘中的K-means算法进行了改进。通过对某支路历史数据的聚类分析,成功区分漏电真零序电流与干扰信号,显著提升了选线判据的准确性。
数据挖掘
16
2024-07-13
基于大数据的数据挖掘引擎研究
为解决大数据环境下的数据挖掘难题,研究了基于Spark核心引擎的数据挖掘引擎。利用Spark的内存计算算子,实现了多个传统数据挖掘算法的并行计算,使其能在集群环境中高效运行。采用系统分层方法设计了数据挖掘系统,构建了完整的大数据挖掘平台。实验证明,基于Spark的并行计算能显著缩短执行时间,在大数据挖掘应用中表现优异。
数据挖掘
10
2024-08-24
研究遗传神经网络的数据挖掘方法
本研究探讨了遗传神经网络在数据挖掘中的应用,重点分析其在处理复杂数据时的优势与效果。通过实验验证,提出了改进的算法,提高了挖掘效率。
数据挖掘
13
2024-10-31
复杂网络与数据挖掘的研究比较与整合
在分析比较复杂网络与数据挖掘两种研究范式的基础上,强调数据挖掘研究需深入探索系统普适规律和内在机制发现;同时指出复杂网络可借助数据挖掘技术处理大数据,实现理论与数据的协同。此外,探讨了现有的复杂网络与数据挖掘交叉研究,并提出了范式整合的可能方向与途径。
数据挖掘
10
2024-07-16
网络数据挖掘
Bing Liu 著
数据挖掘
11
2024-05-13
基于 ICA 的异常数据挖掘算法研究
提出了基于影响函数的异常数据检测方法,该方法通过投影分析来分离观测数据中的异常成分,有效消除脉冲噪声。实验结果验证了该方法在异常数据检测方面的可靠性和有效性。
数据挖掘
11
2024-05-28
基于统计相关属性选择的数据挖掘研究
数据挖掘技术中的关键步骤之一是属性选择,其目的是优化模型性能,通过选择最相关的属性提高数据挖掘效率。本研究侧重于基于统计相关性的属性选择方法,以应对日益扩大的数据集存储需求,提升数据挖掘过程中的效果和可靠性。特别关注CFS算法及其在特征子集搜索中的应用,以及Best First算法在优化特征选择过程中的贡献。
数据挖掘
12
2024-08-24