在分析比较复杂网络与数据挖掘两种研究范式的基础上,强调数据挖掘研究需深入探索系统普适规律和内在机制发现;同时指出复杂网络可借助数据挖掘技术处理大数据,实现理论与数据的协同。此外,探讨了现有的复杂网络与数据挖掘交叉研究,并提出了范式整合的可能方向与途径。
复杂网络与数据挖掘的研究比较与整合
相关推荐
SPSS与数据挖掘的应用比较
数据挖掘和统计分析最初由专家系统和人工智能发展而来,重点在于结合商业经验和知识来评估其成功与否。数据挖掘不需要关于数据集的任何先验假定,可以发现大数据集中的潜在规律,前提是需要深入理解数据和商业问题。数据挖掘主要依赖统计量来评估模型的质量,这要求数据满足假定(如正态性)。模型的统计量结果用于假设检验,以评估关系的显著性。在处理大数据时,更多地依赖抽样方法进行统计分析。
算法与数据结构
16
2024-07-16
基于网络数据挖掘的研究
随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
数据挖掘
8
2024-09-13
数据挖掘技术比较与分析
在算法参数控制和扩展功能选项方面的对比显示,Enterprise Miner和PRW在参数控制方面表现较为出色,而Intelligent Miner在此方面则表现不足。大多数产品提供了对决策树的实数值处理和图形展示等扩展功能,但只有Clementine和Scenario较好地实现了树的修剪选项功能。此外,神经网络的扩展功能也存在显著差异。
Hadoop
14
2024-07-13
探索数据挖掘:聚类算法的比较研究
这份关于数据挖掘中聚类算法的比较研究论文,带你深入了解不同算法的优缺点和适用场景。
数据挖掘
15
2024-05-20
数据挖掘中聚类算法比较研究
聚类分析是数据挖掘中的关键技术之一。探讨了数据挖掘中聚类算法的典型要求和不同类别的聚类方法。
数据挖掘
11
2024-08-24
复杂对象数据挖掘
数据挖掘原理与SPSS Clementine应用:15.1 空间数据库挖掘15.2 多媒体数据挖掘15.3 文本挖掘15.4 挖掘万维网15.5 挖掘数据流15.6 时间序列数据挖掘15.7 挖掘事务数据库中的序列模式15.8 挖掘生物学数据中的序列模式
数据挖掘
10
2024-04-30
工作流系统与云计算数据挖掘平台整合研究
探讨了工作流系统与基于云计算的数据挖掘平台整合的关键知识点。云计算是通过网络提供计算资源和数据存储服务的模式,其灵活性、可靠性和高性价比使其成为当前重要技术。数据挖掘平台基于云计算,支持多种并行数据提取和挖掘算法,通过参数配置实现高效的数据分析。工作流系统在数据挖掘中的应用则能协调各项任务,按照逻辑顺序执行算法,提高数据挖掘的效率和准确性。整合后的系统不仅支持并行算法组合和参数定制,还实现了数据处理流程的自动化和优化,为复杂业务需求提供了灵活的解决方案。
数据挖掘
16
2024-10-13
社交网络数据挖掘与分析
社交网络数据挖掘与分析是指运用数据挖掘技术从社交网络数据中提取有价值信息的过程。社交网络平台积累了海量用户数据,包括用户个人信息、社交关系、兴趣爱好、行为轨迹等。通过数据挖掘技术,可以发现用户行为模式、社交网络结构特征、信息传播规律等,为用户画像、精准营销、舆情监测等应用提供数据支持。
社交网络数据挖掘与分析主要涉及以下几个方面:
数据收集: 从社交网络平台获取原始数据,例如用户帖子、评论、点赞、转发等。
数据预处理: 对原始数据进行清洗、转换、整合,使其符合数据挖掘算法的要求。
特征提取: 从预处理后的数据中提取有价值的特征,例如用户活跃度、影响力、情感倾向等。
数据分析: 运用数据挖掘算
数据挖掘
10
2024-05-31
Web 数据挖掘:研究与应用
这份文档深入探讨了数据挖掘技术在 Web 环境下的研究进展和应用案例。
数据挖掘
16
2024-05-23