1997年,研究人员对韦尔德的医疗数据进行再识别,引发了对未识别数据再识别风险的担忧,进而影响了2003年《健康保险可移植性和责任法案》的隐私规则制定。然而,深入分析表明,韦尔德被再识别的可能原因是他是公众人物,而非使用选民登记表等数据。该事件突显了再识别的挑战,即缺乏准确的人口登记册。尽管再识别风险有所降低,但完善去识别政策至关重要,以保护患者隐私,同时保障科学研究和统计分析的准确性。
马萨诸塞州前州长威廉·韦尔德医疗信息再识别事件:重审健康数据识别风险和隐私保护
相关推荐
信息时代数据挖掘与隐私保护
本章介绍了本书的内容和各章节的概述。首先,指出了数据挖掘和分析在信息社会中的必要性及其潜在影响。特别是在处理数据挖掘算法中如何整合法律和道德规范以防止歧视方面,提出了技术和非技术解决方案。本章最后概述了本书的结构,包括数据挖掘和分析的应用机会、潜在的歧视和隐私问题、法律、规范和市场应用中的实际解决方案。
数据挖掘
11
2024-07-13
Hadoop 安全与隐私保护
Hadoop 安全机制保障了大数据平台数据隐私与安全,有效防御外部攻击和内部威胁。
Hadoop
14
2024-05-01
隐私保护数据挖掘前沿研究
随着移动互联网、物联网等技术的蓬勃发展,个人隐私数据面临着前所未有的侵犯风险。隐私保护数据挖掘成为数据挖掘领域的热点,研究者们针对移动端、分布式系统、高维数据和时空数据等场景下隐私保护问题,提出了多种方法和算法,取得了丰硕的成果。
数据挖掘
13
2024-05-13
序列模式挖掘隐私保护研究
针对序列模式挖掘中的隐私保护问题,研究人员提出了名为CLDSA(当前最少序列删除算法)的创新算法。
该算法通过对候选序列进行加权,并在删除过程中动态更新权重,以贪心算法获得局部最优解,从而最大限度地减少对原始数据库的修改。
实验结果验证了CLDSA算法在隐藏敏感序列方面优于现有方法,实现了更有效的隐私保护。
数据挖掘
24
2024-04-30
商务数据分析中的隐私风险
商务数据分析中存在的隐私问题是一个关键议题。随着大数据技术的发展,个人信息的保护面临着日益严峻的挑战。
Hadoop
15
2024-07-21
高斯-赛德尔方法用于方程组的高斯-赛德尔方法-MATLAB开发
在变量A中定义系数矩阵,在C中定义常数。通过计算向量X,最终矩阵将显示为[AXC]。同时提供所有中间计算步骤。
Matlab
14
2024-08-22
MATLAB实现高斯赛德尔迭代法
高斯赛德尔迭代方法的MATLAB实现如下:首先,将线性方程组Ax = b转化为适合迭代的形式。通过设置初始值并利用高斯赛德尔迭代公式,逐步更新解的值,直到满足设定的收敛条件。以下是实现的代码示例:
function x = gauss_seidel(A, b, x0, tol, maxIter)
n = length(b);
x = x0;
for k = 1:maxIter
x_old = x;
for i = 1:n
sum1 = A(i, 1:i-1) * x(1:i-1);
sum2
Matlab
12
2024-11-03
优化性能识别ORACLE等待事件中的关键瓶颈
优化性能:通过ORACLE等待事件快速识别关键瓶颈并及时解决问题。V$SESSION记录当前数据库连接的session信息,V$SESSION_WAIT记录活动session正在等待的资源或事件信息。V$SYSTEM_EVENT汇总自数据库启动以来所有等待事件的信息,为您提供数据库运行的全面概况。从Oracle 10g开始,V$SESSION和V$SESSION_WAIT功能得到进一步丰富,帮助您更好地管理数据库运行。
Oracle
14
2024-08-11
医疗信息系统
易迅医疗信息系统以医生为核心,注重满足其需求。利用软件系统帮助医生高效、智能、安全地完成非主观性的临床工作。系统通过积累临床经验知识,并促进医生间的经验交流和信息共享,提升医疗水平,让医生解脱重复性的工作。
SQLServer
14
2024-08-17