为了满足用户在不同场景下对空间数据挖掘的个性化需求,该研究提出了空间数据挖掘视角的概念。该视角能够在明确具体数据挖掘需求的基础上,利用相应的数据挖掘算法,从海量空间数据中提取不同粒度的空间知识。研究首先深入探讨了空间数据挖掘视角的内涵和外延,进而提出了一系列相应的算法,最后将该视角应用于滑坡监测数据的实际挖掘中,取得了令人满意的效果。
基于视角的空间数据挖掘方法 (2006年)
相关推荐
空间数据挖掘综述
空间数据挖掘从空间数据库中提取知识和模式,用于理解空间数据及其相互关系。它基于数据挖掘技术,但考虑到空间数据的复杂性和专业性,需要独特的理论、方法和应用。
算法与数据结构
20
2024-05-16
空间数据挖掘的新视角空间统计学应用探析
空间统计学(Spatial Statistics)依赖于有序模型描述无序事件,通过分析、评估和预测空间数据,基于统计空间实体的几何特征量如最小值、最大值、均值、方差、众数或直方图,获得空间实体特征的先验概率。它在多元统计分析中特别有效,如判别分析、主成分分析、因子分析、相关分析和多元回归分析。空间统计学拥有坚实的理论基础和成熟的算法,是基本的数据挖掘技术之一。然而,对于空间数据库中的相关数据,传统的统计假设常常无法满足实际需求,这也是其发展面临的挑战之一。
算法与数据结构
20
2024-08-15
空间数据挖掘空间数据库概论
空间数据的自相关性带来的“坑”,还真得好好聊聊。你以为随便采样就能搞定空间数据?嗯,不好意思,还真不是这么回事。空间数据挖掘就得讲究点方式,像那种传统的随机采样,用在这儿完全没效果。还得用专门的算法才行,是大数据集那种,效率也要考虑进去。能直接把挖掘技术嵌到SQL里,这点我觉得挺香的,省去了中间的麻烦。比如查询的时候,顺手做个模式识别,响应也快,数据也能实时,挺适合做一体化的数据服务。你要是第一次接触空间数据库,可以先看看《详述空间数据库》,里面讲得还蛮清楚;如果你已经开始动手做项目了,像《空间数据挖掘综述》和《Oracle 空间数据库配置》这类文章也别错过,实用性比较高。还有个提醒:空间数据
数据挖掘
0
2025-06-14
VGC可视化交互空间数据挖掘原型设计2006
可视化交互的空间数据挖掘工具你用过吗?我最近翻到一个蛮有意思的老项目——VGC,虽然是 2006 年的东西,但设计思路和模块拆分到现在看也还挺清晰的。VC++6.0 配合MapObject2.0组件做开发,整个系统主要是为空间数据服务的,有点像今天的轻量版 ArcGIS 插件。但它更注重挖掘结果的交互展示,响应也快,图形界面也不难用。模块分得挺细:从数据导入、预、挖掘到可视化再到结果输出,流程比较完整。尤其是数据挖掘这块,集成了决策树和贝叶斯网络,搞分类或者预测任务都还挺方便的。比如你有一堆城市规划数据,想看哪块区域发展潜力大,用决策树一跑,图上就能看出不同区块的潜力分类。再配合贝叶斯建模,推
数据挖掘
0
2025-06-14
空间数据挖掘与 CUDA
空间数据挖掘
空间数据与占据特定空间的对象相关,存储于空间数据库中,并通过空间数据类型和空间关系进行管理。其包含拓扑和距离信息,并利用空间索引进行组织和查询。空间数据的独特性为空间数据库的知识发现带来了挑战和机遇。
空间数据库的知识发现,也称为空间数据挖掘,是从空间数据库中提取隐含知识、未直接存储的空间关系以及空间模式的过程。空间数据挖掘技术,尤其在空间数据理解、空间与非空间数据关系发现、空间知识库构建、空间数据库查询优化和数据组织方面,在 GIS、遥感、图像数据库、机器人运动等涉及空间数据的应用系统中具有广阔前景。
常用方法
统计分析方法
统计分析是目前空间数据分析的常用方法,适用于处理
数据挖掘
11
2024-05-25
空间数据挖掘与发展趋势
空间数据挖掘技术不断发展,在大数据、云计算和物联网等新兴技术的推动下,正呈现出新的趋势。探索空间数据挖掘的算法、技术和应用,分析其在各个领域的应用前景,推动空间数据挖掘领域的持续发展。
数据挖掘
10
2024-04-30
空间数据挖掘技术研究综述
空间数据挖掘技术作为从海量、高维空间数据中提取隐含知识的关键技术,近年来受到越来越多的关注。对空间数据挖掘技术的研究现状和未来发展趋势进行系统性概述。
文章首先分析了空间数据挖掘技术产生的背景,并对当前的研究现状进行了梳理。随后,对空间数据挖掘的体系结构和典型系统原型进行了概括性介绍,并总结了近年来该领域的主要研究方法和面临的挑战。最后,对空间数据挖掘技术的未来发展方向进行了展望。
数据挖掘
12
2024-06-30
SpatialDM QGIS插件用于空间数据挖掘
SpatialDM是一个QGIS插件,专门设计用于在空间数据集上运行数据挖掘算法。该插件兼容多波段栅格图层和逗号分隔值(CSV)文件,并已集成三种分类器:决策树分类器、AdaBoost分类器和随机森林分类器。安装前请确保系统已安装QGIS、Python和Scikit-learn(详见依赖关系)。安装方法简单,只需将SpatialDM目录复制到以下文件夹中:UNIX/Mac:〜/.qgis/python/plugins和(qgis_prefix)/share/qgis/python/plugins;Windows:〜/.qgis/python/plugins和(qgis_prefix)/pyth
数据挖掘
13
2024-07-17
空间索引技术在空间数据挖掘中的应用
空间索引技术将空间实体按照位置、形状或空间关系排序,创建出有序数据结构,以提高空间数据库和地理信息系统的性能。在空间数据挖掘中,空间索引技术对于提升效率至关重要。常用的空间索引结构包括:
网格文件
四叉树
R-树
k-D 树
算法与数据结构
21
2024-05-12