数据挖掘技术在解决各领域业务问题中发挥着重要作用,例如教育、电信和零售管理等。凭借其在分类、聚类和关联规则挖掘等方面的功能,数据挖掘技术正变得日益重要。以学生学业成绩数据集为研究对象,构建了预测分类模型,并比较了朴素贝叶斯、决策树、随机森林、JRip 和 ZeroR 等算法的预测性能。研究结果表明,学校和学习时间等因素对学生的最终成绩有显著影响。其中,One Rule、JRip 和决策树等分类算法在预测学生成绩方面表现优异,准确率均超过 80%。
基于数据挖掘的学生学业成绩预测模型研究
相关推荐
学生学业成绩分析管理系统
在软件工程中,详细讨论了学生成绩以及分析管理系统的概要设计。数据库部分涵盖了E_R图和用例图,并使用UML建模进行了说明。
MySQL
16
2024-07-20
机器学习在预测学生学业成绩中的应用:系统综述
机器学习已成为预测学生学业成绩的重要工具。对相关研究进行了系统综述,考察了机器学习模型在教育数据挖掘中的应用。我们评估了不同方法的准确性、特异性、灵敏性和召回率,并探讨了它们对改善教育系统的影响。此外,我们还讨论了当前挑战和未来的研究方向。
数据挖掘
11
2024-05-31
基于SQLserver的学业成绩管理系统报告
利用SQLserver开发的学业成绩管理系统,可用于作业报告的分析与管理。
SQLServer
10
2024-07-28
基于分层线性模型的学生数据挖掘研究
本研究以教育数据挖掘的通用自变量为基础,结合官方考试评估报告,建立了客观评价学生能力提升的模型。
数据挖掘
14
2024-05-26
利用数据挖掘技术实现分类预测模型
利用数据挖掘技术,我们可以建立分类预测模型,用于对未知数据进行分类测试。这些模型的应用不仅限于测试数据,还可以在实际情境中进行预测。
Hadoop
10
2024-08-29
基于灰色理论的数据预测模型
该程序 huiseyuce.m 运用灰色理论构建 GM(1,1) 模型,用于数据预测。其主要步骤包括:对原始数据进行级比检验,以验证其是否符合灰色建模条件;建立基于灰色系统理论的一阶微分方程;利用 MATLAB 软件求解模型中的灰参数和微分方程,最终得到预测模型。
算法与数据结构
20
2024-05-23
基于 MATLAB 的砷中毒预测模型
基于 MATLAB 开发的砷中毒预测模型,该模型能够有效预测砷中毒风险。
Matlab
9
2024-05-31
数据挖掘技术预测学生表现比较研究
本研究比较了决策树、神经网络、朴素贝叶斯、K近邻和支持向量机等数据挖掘方法的准确率,结果表明决策树和神经网络在学生表现预测方面提供了最佳准确性。
数据挖掘
13
2024-04-29
利用数据挖掘建立和优化电信客户流失预测模型
数据挖掘技术在电信客户流失预测中的应用愈发重要,该技术提供了实现个性化服务和提前干预的可能性,对于电信公司管理客户关系至关重要。建议下载详细了解如何利用数据挖掘优化客户流失预测模型。
数据挖掘
14
2024-07-17