首先,阐述了数据驱动故障诊断方法的研究动机和国内外发展现状。从新的视角,将现有方法划分为基于数据驱动的方法、基于分析模型的方法和基于定性经验的人工智能方法,说明该方法在整个体系中的地位,并探讨了其数据利用及与基于分析模型的方法的比较。接着,按照新分类对基于数据驱动的故障诊断现有方法进行综述,分析并比较了各方法的区别和联系。最后,指出了数据驱动故障诊断方法的几个前景广阔的研究方向。
数据驱动的故障诊断方法综述
相关推荐
Oracle故障诊断与分析方法
Oracle 的故障诊断资料里,我还蛮推荐这份方法的。内容覆盖得挺全,从日志、进程、参数到性能视图,基本把 DBA 常用的排查套路都串了一遍。讲的也不啰嗦,适合你快速查阅和复盘。对着案例看,思路清晰,是 Job 任务卡住那段,写得挺实用的。
Oracle
0
2025-06-23
设备故障诊断及远程维护
设备故障诊断,远程维护,快速解决问题。
算法与数据结构
13
2024-05-16
粗糙集约简飞机故障诊断
应用变精度粗糙集简化飞机发电机故障诊断,通过下近似集判定定理和决策约简规则提取有效信息。采用决策表、约简规则和专家经验构建决策约简表,验证了该方法的准确性和普适性。
数据挖掘
11
2024-04-30
DB2 故障诊断指南
IBM DB2 官方故障诊断指南,全面适用。
DB2
16
2024-05-13
WVD信号处理方法在内圈故障诊断中的应用
魏格纳—威尔分布(Wigner-Ville Distribution, WVD)是一种非线性时频分析方法,在机械系统特别是内圈故障诊断中具有重要应用。详细探讨了WVD的概念、工作原理及其如何帮助识别振动信号中的故障特征频率。使用MATLAB进行实现时,用户可以通过编写代码计算和可视化WVD图像,进一步加深对信号时频特性的理解。
算法与数据结构
13
2024-09-14
KPCA在TE过程故障诊断中的应用
在TE的过程故障诊断中,KPCA(核主成分分析)提供了强大的支持。以下是一个实用的MATLAB程序,能够有效地实施KPCA方法来分析TE过程中的数据,帮助识别潜在的故障。希望这个程序能够为您的工作带来便利。
Matlab
9
2024-11-01
智能诊断、故障诊断与数据挖掘研究论文集
智能诊断的相关论文集对这个领域的研究进行了深入探讨。里面包括了智能诊断、故障诊断和数据挖掘三个核心方向。你可以了解如何用计算机科学、人工智能以及机器学习来检测设备故障和预测潜在问题,挺有实际价值的。如果你在工作中需要设备维护或故障诊断,这些论文会给你带来不少启发。比如,**智能诊断**通过神经网络和模式识别技术实时监测设备状态,发现潜在问题。而**故障诊断**则通过设备数据,帮你快速定位故障原因。再加上**数据挖掘**,能够从海量数据中提取有用的模式,提前预防问题。整体来看,这些论文能你更好地理解这些技术的应用,提升诊断准确性和工作效率。如果你在相关领域工作,这些资料就像是一个不错的资源库,值
数据挖掘
0
2025-07-01
HSFDONES本体自学习故障诊断框架
自学习的故障诊断框架你用过吗?这个叫做 HSFDONES 的系统挺有意思,主打一个“边干边学”。它是基于本体论构建的,懂结构、懂故障,还能通过数据仓库自动进化知识库——有点像自己的 AI 助手,一边挖掘数据一边长知识。用到的算法也比较熟,像决策树、Apriori这些,基本搞数据的都听过,落地起来也不难。
HSFDONES 的数据仓库设计也蛮靠谱,把不同格式的设备日志整合进来,再做统一清洗,像Excel、TXT这些格式杂乱的数据就实用。整套流程走下来,故障类型和原因都能系统化自动产出,诊断效率蹭蹭上涨。
而且它的本体自学习机制也挺有看头:定义了结构本体和故障本体,还能通过数据挖掘不断学习新内容。
算法与数据结构
0
2025-06-26
基于数据挖掘的液压泵故障诊断研究
液压泵故障诊断的老大难问题,用模糊粗糙集加数据挖掘技术来搞定,效果还挺不错的。这套方法主打一个稳和准,尤其适合那些不确定、含糊的数据,挺像平时做数据清洗时遇到的那种“感觉怪怪的”情况。
文章里先讲了数据怎么清洗、标准化、离散化,逻辑还挺清晰的。像用Z-score做标准化、离散后建决策树,这些做法实在,和前端做日志其实思路差不多。
重点是它的故障诊断模型挺有意思,模型里用到了模糊粗糙集做属性约简,不用整一堆没用的特征,效率上去了,准确率也提高了。嗯,还有个小细节是它的决策规则生成方式,像做规则引擎的逻辑。
仿真部分也不是那种“纸上谈兵”,它是搭了一个液压泵系统模拟各种故障场景来验证,数据和模型训
数据挖掘
0
2025-06-14