配置实验模式、选择结果保存路径、设定实验类型、交叉验证和随机化/未知记录次序的保持方法、迭代控制和实验次数设定、管理数据集及类标、添加和设置分类算法及参数。
设置页面-数据挖掘工具Weka教程
相关推荐
数据挖掘工具Weka教程:运行页面详解
在Weka的运行页面,点击“运行”按钮即可开始数据挖掘实验。
实验过程中,系统会实时报告运行情况。
实验结束后,系统会生成一个数据集,其中每条记录对应一次实验,包含所用算法、数据集和性能指标等信息。
Weka的分析功能目前仅限于数值分析和显著性检验,尚不具备可视化分析能力。
数据挖掘
16
2024-05-15
Weka数据挖掘工具:运行页面详解
在Weka的运行页面上,点击“运行”即可开始数据挖掘任务。页面将实时报告运行进度,并在完成后生成一个结果数据集。
每个记录代表一次实验,包含所用数据集、分类算法以及各项性能指标。
当前分析功能:* 数值分析* 显著性测试
暂不支持:* 可视化分析
数据挖掘
14
2024-05-24
数据挖掘工具Weka的页面分析
通过对Weka数据挖掘工具页面进行分析,探索实验结果数据源选择、配置测试、模型分类基准和结果汇总等关键内容。
数据挖掘
15
2024-07-17
数据挖掘工具WeKa教程
在数据挖掘领域,WeKa作为一种强大的工具,广泛应用于数据处理和模型评估。其功能包括交叉验证、贝叶斯网络显示、数据源管理以及分类器性能评估。通过WeKa,用户可以有效地处理和分析各种数据集。
数据挖掘
10
2024-10-12
WEKA数据挖掘工具教程
WEKA小结:1. 数据预处理- Explorer – Preprocess- Explorer – Select attributes: 可以在Preprocess页面使用属性选择方法。2. 数据可视化- Explorer – Visualize: 二维散布图。3. 分类预测- Explorer – Classify。4. Experimenter: 比较多个算法的性能。5. KnowledgeFlow: 批量/增量学习模式。6. 关联分析- Explorer – Associate。7. 聚类分析- Explorer – Cluster。
数据挖掘
10
2024-10-31
Weka 数据挖掘工具参数设置
关联规则挖掘参数设置
任务一:挖掘支持度在 10% 到 100% 之间,提升度超过 1.5 且排名前 100 位的关联规则。
lowerBoundMinSupport:0.1
upperBoundMinSupport:1
metricType:lift
minMetric:1.5
numRules:100
任务二:挖掘支持度在 10% 到 100% 之间,置信度超过 0.8 且排名前 100 位的分类关联规则,数据集为“weather.nominal.arff”。
car:True
metricType:confidence (只能选择 confidence)
minMetric:0.8
数据挖掘
12
2024-05-12
WEKA数据挖掘工具详细中文教程
WEKA,全称为怀卡托智能分析环境,是由新西兰怀卡托大学开发的开源数据挖掘工具。自2005年获得国际数据挖掘与知识探索领域的最高服务奖以来,WEKA已成为数据挖掘和机器学习领域的重要工具。其功能涵盖数据预处理、分类、回归、聚类、关联分析等多个方面,并提供直观的交互式界面,方便用户进行数据可视化操作。本教程详细介绍了WEKA的数据格式、ARFF文件结构、数据准备与预处理、属性选择与特征工程、可视化分析以及分类预测等关键内容。
数据挖掘
16
2024-08-09
数据挖掘工具教程使用Weka进行实验
本实验通过选择UCI数据集中的样本进行分析,运用三种不同的分类算法,比较它们的性能表现。实验分为12个组,每组选择一个数据集进行研究。分析过程包括文字和图形解释结果,以及两个性能度量的比较,揭示不同算法在实验中的表现差异。
数据挖掘
9
2024-07-13
增量处理模式-数据挖掘工具(Weka 教程)
增量学习NaiveBayesUpdateable数据源 - ArffLoader评估 - ClassAssigner分类器 - NaiveBayesUpdateable评估 - IncrementalClassifierEvaluator可视化 - TextViewer可视化 - StripChart精度 - Accuracy均方根误差 - RMSE
数据挖掘
14
2024-05-20