2.1 告警收敛数据挖掘算法框架设计。告警数据属于典型的时态数据,时态数据挖掘技术构成了本章算法的理论基础。
告警收敛数据挖掘算法框架设计——基于因子图和GTSAM
相关推荐
基于因子图和GTSAM的告警收敛研究
告警收敛算法框架
本研究结合三种算法设计了告警收敛算法框架,并实现了告警收敛数据挖掘及其可视化。该框架包括:
告警趋势预测算法: 用于判断是否发生了大规模告警。该算法基于接警人每小时统计的历史告警量,利用分位点进行数据去噪和排序重组,建立统计学模型并分析数据分布规律,然后根据极大似然估计求解大规模告警阈值,并用系数补偿进行优化调整,最后输出告警数量阈值的规则文件。
时序关联规则挖掘算法: 用于挖掘具有时序特征的告警关联规则,识别不同时间点发生的告警之间的关联性。
策略关联规则挖掘算法: 用于挖掘与策略相关的告警关联规则,识别不同策略配置下产生的告警之间的关联性。
GTSAM在告警收敛中的应
数据挖掘
13
2024-05-15
告警收敛现状与Factor Graphs及GTSAM应用
1. 告警收敛的研究现状
告警收敛指通过对告警信息进行分析、合并和丢弃,减少告警的规模。这项研究随着智能化运维监控的发展而快速进步,成为运维系统中的关键环节。目前,告警收敛主要通过告警压缩和告警关联两种方式实现。
1.1 告警压缩
告警压缩利用告警趋势预测算法,对告警数据进行压缩,去除冗余告警。常用方法包括情景规则挖掘算法,如WINEPI算法等,这些情景规则主要用于滤除重复和冗余的告警信息。Gary M Weiss等人提出的基于遗传算法的timeweaver算法,能够从告警数据库中挖掘可预测的小概率时序模式。
1.2 告警关联
告警关联则通过关联数据挖掘算法,应用于网络故障诊断的告警收敛。比如
数据挖掘
15
2024-10-25
自主驾驶模拟框架设计和仿真
基于 MATLAB,开发了自主驾驶模拟框架,用于仿真 MCity 自主联网车辆的驾驶策略。
Matlab
18
2024-04-30
运维监控系统中告警收敛算法的未来展望
专注于运维监控系统中告警收敛算法的研究,涉及告警趋势预测、时序关联规则挖掘和策略关联规则挖掘算法。我们设计并测试了数据挖掘装置和告警收敛数据可视化系统,以减少告警信息的合并压缩效果,并优化用户界面交互体验。尽管每种算法针对特定应用需求,但也揭示了改进空间。未来的工作将侧重于动态调整告警趋势预测算法的分位点,优化时序关联规则挖掘算法的置信度阈值选择,并扩充策略关联规则挖掘算法的关系库,进一步提升算法效果和用户体验。
数据挖掘
8
2024-08-23
物资管理系统框架设计图
这是一个物资管理软件的框架设计图,详细描述了其框架结构、基础表内容以及数据库建立,用于物资软件需求的编写。
MySQL
15
2024-07-18
基于图像轮廓生成轴对称血管曲率因子图
基于图像轮廓生成轴对称血管曲率因子图
本方法利用图像中轴对称血管的轮廓线 (I),计算血管表面每个点的曲率因子,生成曲率因子图 (Mat)。
输入:
I:二值边缘图像,表示图像中轴对称血管的边界曲线,其厚度接近一个像素,且相对于 Y 轴对称。
输出:
Mat:双精度矩阵,大小与输入图像 I 相同,表示图像中血管区域内每个点的曲率因子 (F)。
应用:
可用于调整容器表面的反射,识别透明容器中的材料。
Matlab
19
2024-05-25
基于加权不确定图数据的高效紧密子图挖掘算法
研究不确定图数据中的紧密子图挖掘问题,利用加权不确定图模型,以子图期望密度和顶点期望度数度量紧密程度。算法基于贪心迭代,优化执行过程,保证结果达到2近似比,并且确保高效率和正确性。研究还证明了带顶点限制的紧密子图挖掘问题的NP难度,该算法相比其他方法更快速高效。
数据挖掘
15
2024-07-21
基于 Access 数据库的网站后台管理系统框架设计与实现
介绍一个基于 Access 数据库的网站后台管理系统框架。该框架经过修改,结构简洁实用,支持多级菜单控制,并结合 JavaScript 实现动态显示。 数据库文件位于 manage/DB_51aspx/freasy.mdb,后台管理入口为 manage/default.aspx 。
Access
16
2024-05-29
数据挖掘算法和知识发现
掌握数据挖掘的基础概念、常用算法以及知识发现的方法和案例。
数据挖掘
12
2024-05-26