这篇硕士毕业论文于2008年1月发布,探讨了关联规则算法在金融数据分析中的应用。详细介绍了对Apriori算法的改进,引入hecker确信因子以过滤无效规则。采用了一种创新的股票数据预处理算法进行数据预处理,并通过对上交所部分股票数据的分析验证了算法的有效性。
关联规则算法在金融数据分析中的创新研究
相关推荐
数据挖掘中关联规则算法的研究
近年来,随着计算机技术的迅猛发展,信息技术得到了广泛的应用,数据挖掘技术作为一个新兴领域,其算法之一——关联规则算法,尤为活跃。关联规则算法能够有效处理大量数据和信息,通过从数据库中提取繁琐的项集,并建立这些项集之间的关联关系,从而挖掘出有价值的数据信息,满足不同领域的需求。深入研究了数据挖掘中关联规则算法的应用与发展。
数据挖掘
16
2024-09-14
关联规则挖掘的新算法研究
关联规则挖掘一直是数据挖掘中重要的内容之一。提出了DPCFP-growth算法,它是基于MSApirori算法,并采用了CFP-growth分而治之的策略,以弥补原算法的不足。与CFP-growth算法相比,DPCFP-growth算法有效地将大数据库分解为多个小的子数据库,从而提高了算法的运行效率。实验结果表明,DPCFP-growth算法在大型数据挖掘中具有优越性。
数据挖掘
17
2024-07-17
SPSS-Clementine应用宝典-负关联规则挖掘算法的数据分析
在数据挖掘中,负关联规则挖掘算法主要探索形如A→┐B、┐A→B、┐A→┐B的蕴含关系,其中项集A的存在抑制了项集B的出现。这种挖掘方法突出了负相关的数据模式分析。
数据挖掘
15
2024-09-14
数据挖掘中的关联规则分析
关联挖掘应用于分析文献借阅历史数据,探讨图书馆数据与数据挖掘的相关文献。
数据挖掘
10
2024-07-13
Apriori关联规则算法
Apriori算法是挖掘关联规则的经典算法,效率较高。本算法对Apriori算法进行了改进,提高了效率。
数据挖掘
11
2024-05-25
数据挖掘中的Apriori算法与关联规则分析
Apriori算法是一种采用逐层搜索的迭代方法,用于发现数据中的频繁项集。该算法从频繁1-项集开始,逐步探索更高阶的频繁项集,通过连接和剪枝两步骤完成。
数据挖掘
15
2024-08-01
关联规则分析简介
关联分析挖掘大数据中相关联系,发现规律和模式,应用于商业决策。如购物篮分析、跨品类推荐、货架布局优化、联合促销等,提升销量、改善用户体验。
数据挖掘
15
2024-05-27
Apriori算法:挖掘数据中的关联规则
Apriori算法:发现数据中的隐藏关系
Apriori算法是一种用于挖掘关联规则的经典算法。它通过迭代搜索频繁项集,并根据支持度和置信度等指标生成关联规则。换句话说,它可以帮助我们发现数据中隐藏的规律,例如“购买面包的顾客也经常购买牛奶”。
Apriori算法的核心思想是:如果一个项集是频繁的,那么它的所有子集也是频繁的。基于这个原理,算法逐步扩展项集的大小,并通过剪枝策略减少计算量。最终,我们可以得到所有频繁项集,并根据它们生成关联规则。
Apriori算法的应用非常广泛,例如:
市场篮子分析:分析顾客的购买行为,发现商品之间的关联关系,帮助商家进行商品推荐和促销。
网络安全:分析网络日
算法与数据结构
18
2024-04-29
《RapidMiner数据分析与挖掘实战》第8章关联分析与关联规则
关联规则分析是数据挖掘中非常重要的一种方法,从数据集中发掘各项之间的潜在关联关系,这些关系并未在数据中明确显示。 8.1.1 常用关联规则算法列出了几种常见的关联算法,如表8-1所示。
算法与数据结构
15
2024-07-12