利用神经网络、逻辑回归和决策图表结合的新方法,开发了一种创新的破产/风险模型。新的变量选择过程使得该模型显著超越了传统商业模型。
创新方法上海证交所数据挖掘培训
相关推荐
上海证交所数据挖掘培训
我们最佳的客户离他们所属网点的距离?
数据挖掘
15
2024-05-01
上海证交所数据挖掘培训数据源识别策略
为了达成业务目标,下一步就是确定能够支持解决业务问题的数据源。这些数据可以来自操作型数据或公司内部的数据库和数据仓库。参与者包括业务分析员、数据挖掘分析员和IT人员,活动包括与IT部门的会议和访谈。
数据挖掘
13
2024-07-19
数据挖掘中的创新方法支持向量机探索
国内一位教师撰写的数据挖掘教材,着眼于优化方法,深入探讨了支持向量机的应用。
数据挖掘
11
2024-07-13
数据挖掘中的创新方法支持向量机探索
支持向量机作为数据挖掘领域中的新兴方法,正逐步成为研究重点。它以其在处理复杂数据集方面的卓越表现,吸引了广泛的关注和应用。
数据挖掘
12
2024-07-17
分行客户居住地展示与上海证交所数据挖掘培训
分行客户地址的批量展示功能,真的是日常数据里蛮实用的一块。尤其是在做客户聚类或者地域分布的时候,能一眼看出哪个小区或者哪个区的客户多,后续营销方向都清晰多。
页面上直接拉出一个分行下所有客户的居住地,看起来简单,背后其实也挺讲究。数据库要预好,接口响应要快,最好还能配点小地图,体验会更丝滑。
和这个功能配套的培训资源也挺丰富,像上海证交所的数据挖掘培训,内容就比较贴近业务实际,推荐你去看一眼,点这里就能下载。
如果你对数据源识别策略也有点疑问,可以看看这篇上海证交所数据源识别策略,讲得还挺细的,尤其是银行场景下的那些数据表清洗逻辑。
需要调试 Redis 的,顺手推荐一个比较方便的可执行客户端
数据挖掘
0
2025-06-15
高维数据挖掘中特征选择的创新方法
针对高维数据的特性,即变量数远多于样本数,并且数据呈现异质性,基于众数回归分析和变量选择降维技术,提出了一种创新的特征选择方法。该方法利用局部二次逼近算法(LQA)和最大期望(EM)算法,提供了估计算法和最优调节参数的选取策略。通过模拟数据实验分析显示,该方法在非正态误差分布情况下,比传统的基于最小二乘和中位数的正则化估计方法具有更高的预测能力和稳健性。
算法与数据结构
14
2024-07-15
支持向量机数据挖掘新方法
支持向量机的实战代码,真是数据挖掘里的小金库。邓乃扬和田英杰写的《数据挖掘中的新方法支持向量机》这本书虽然出版早,但内容还挺扎实。你要是刚接触SVM,或者正好在做分类任务,不妨翻翻看。
书是老书,讲的是经典原理,但配套资源还挺丰富。有源码、有案例、有应用解读。尤其是支持向量机源代码这块,适合直接上手跑一跑。一般用在文本分类、图像识别、甚至金融预测都不在话下。
你想看实际项目怎么落地的?可以看看SVM 应用详解,讲得还挺细,流程清晰。代码也不复杂,主要是逻辑结构清楚,调参也不麻烦。
另外,有个源代码资源也值得下,支持命令行操作,配了小数据集。用 Python 改一改就能直接跑,想试试svm-tr
数据挖掘
0
2025-06-16
数据挖掘的新方法:支持向量机
以支持向量机(SVM)为代表的机器学习算法在数据挖掘中发挥着重要作用。SVM是一种监督学习算法,用于分类和回归任务。在数据挖掘中,SVM因其处理高维数据和非线性数据的能力而受到青睐。
在支持向量机中,将数据点映射到更高维的特征空间,并使用超平面将数据点分隔开来。超平面是特征空间中将不同类别的点分开的决策边界。SVM的目标是找到最佳超平面,使超平面与支持向量(距离超平面最近的数据点)之间的间隔最大化。
SVM在数据挖掘中广泛应用于图像分类、文本分类、自然语言处理、生物信息学等领域。通过优化超平面和支持向量,SVM能够有效解决复杂的数据挖掘问题。
数据挖掘
15
2024-04-30
支持向量机:数据挖掘的新方法
在数据挖掘领域,支持向量机是一种新兴且强有力的技术。它是一种机器学习算法,可用于分类和回归问题。支持向量机通过在高维特征空间中查找最佳决策边界来工作,该边界将不同类别的点分开。这使其在处理复杂数据集和识别非线性关系方面特别有效。
数据挖掘
9
2024-05-25