随着慕课迅速成为当前最受欢迎的学习方式,在线学习平台积累了大量学习行为数据。为了深入分析数据挖掘技术在慕课学习行为研究中的应用情况,从2008年至2017年3月收集了国内外Web of Science数据库中的相关文献,并进行了统计和可视化分析。文章介绍了数据挖掘技术在慕课学习行为研究中的一般流程,并将其应用总结为五类,详细讨论了相关研究成果及代表文献。最后,文章总结并探讨了未来的研究方向。
数据挖掘技术在慕课学习行为研究中的应用综述
相关推荐
数据挖掘技术在CISC-4631课程中的应用
数据挖掘作为信息技术领域的核心内容之一,专注于从大型数据库或数据仓库中提取有价值的信息和知识。CISC-4631课程深入探讨数据挖掘技术,帮助学生掌握数据处理、模式识别和预测分析的高级技能。课程中使用Jupyter Notebook作为主要工具,提供交互式环境,结合Markdown文档、代码和图表,便于学生理解和复现数据挖掘流程。
数据挖掘
9
2024-07-17
数据挖掘中的分类技术综述
随着信息技术的迅速发展和互联网的普及,数据量呈爆炸式增长。数据挖掘作为交叉学科,在商业智能、科学研究等领域扮演重要角色。其中,分类技术作为数据挖掘的核心技术之一,通过对数据进行分类处理,能够预测未知数据的类别,为决策提供支持。决策树、关联规则等算法是分类技术的重要组成部分。
算法与数据结构
11
2024-08-05
Web数据挖掘的研究与应用综述
Web数据挖掘是当前数据挖掘领域的重要研究方向,文章首先分析了该领域的挑战,然后概述了几种Web数据挖掘的分类方法,最后探讨了Web2.0时代下的机遇与挑战。
数据挖掘
12
2024-08-22
软件工程中数据挖掘技术的应用综述
随着软件系统规模和复杂性的增长,软件开发已演变成复杂的系统工程。软件工程中的对象、活动和过程越来越难以控制和管理,传统经验型处理模式已不适应新需求。数据挖掘技术的引入为实现智能化软件工程提供了重要机会。主要以软件工程中的数据对象为核心,系统介绍和归纳了在程序代码分析、故障检测、软件项目管理及开源软件开发等方面应用的数据挖掘技术,并对各方法进行了比较分析。最后探讨了未来研究的方向。
数据挖掘
12
2024-10-13
数据挖掘:技术与应用综述
数据挖掘结合了多学科技术,在各个领域的决策支持中发挥着至关重要的作用。它应用于企业决策、市场策略等方面,成为决策支持系统不可或缺的一部分。该综述从技术和应用角度深入探讨了数据挖掘。
数据挖掘
12
2024-04-30
数据挖掘技术与应用综述
顾名思义,数据挖掘是从海量数据中提取有用信息的过程。随着技术的发展,数据挖掘在全球范围内得到了广泛应用,预计未来几年市场将保持快速增长。2000年7月,IDC发布了信息存取工具市场的报告,预测数据挖掘市场到2002年将达到22亿美元。数据挖掘不仅是技术进步的体现,更是未来中国新兴产业的重要组成部分。从“数据挖掘讨论组”网站整理了关于数据挖掘基本理论和方法的内容,帮助读者深入了解该领域。
数据挖掘
21
2024-07-15
数据挖掘技术在效益分析中的应用
全球通品牌的数据业务客户分群达27.3万,动感地带品牌的数据业务客户分群达22.8万。彩信增量销售模型达23.7万,彩铃增量销售模型达19.5万,产品关联性分析模型达11.2万,总计投入104.5万。利用数据挖掘技术构建精确的营销基础。
算法与数据结构
11
2024-10-11
数据挖掘技术在精准营销中的应用
随着数据挖掘技术的发展,精准营销已成为市场营销的重要策略。通过数据仓库的建立和模型的构建与验证,精确营销实施方案得以设计,从而评估实施效益并发现市场机会。
Hadoop
16
2024-07-21
数据挖掘技术综述
当前,数据挖掘领域涵盖了多种常用方法,主要包括数学统计方法和机器学习算法,如人工神经网络和遗传算法。其中包括关联规则挖掘、序列模式分析、分类分析、聚类分析以及异常点检测。
数据挖掘
13
2024-07-13