序列模式t是指在多个数据序列中发现共同的行为模式。 t通过时间序列搜索出重复发生概率较高的模式,强调时间序列的影响。 例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉; 在所有购买了彩色电视机的人中,有60%的人再购买VCD产品; 在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
序列模式-数据挖掘算法解析
相关推荐
序列模式-数据挖掘算法解析
序列模式t是指在多个数据序列中发现共同的行为模式。t通过时间序列搜索出重复发生概率较高的模式。这里特别强调时间序列的影响。例如,在所有购买了激光打印机的人中,半年后80%的人再购买新硒鼓,20%的人用旧硒鼓装碳粉;在所有购买了彩色电视机的人中,有60%的人再购买VCD产品;在时序模式中,需要找出在某个最短时间内出现比率一直高于某一最小百分比(阈值)的规则。
数据挖掘
16
2024-10-17
探寻序列数据中的规律:序列模式挖掘算法解析
序列模式挖掘:在包含多个有序序列的数据集中,每个序列由按特定顺序排列的不同元素构成,每个元素又包含不同的项目。通过设置最小支持度阈值,算法识别频繁出现的子序列,即满足出现频率高于阈值的子序列模式。
算法与数据结构
19
2024-04-29
PrefixSpan:GSP 序列模式挖掘算法
基于优先级原则的序列模式挖掘算法
通过产生并检测候选序列的方式
扫描序列数据库,得到长度为 1 的序列模式
根据种子集生成候选序列模式,计算支持数
迭代上述步骤,直到没有新序列模式或候选序列模式产生
算法与数据结构
13
2024-05-15
Python编程实现序列模式挖掘算法
利用Python编程语言实现数据挖掘中的序列模式挖掘算法。
数据挖掘
11
2024-09-13
数据挖掘算法解析
数据挖掘常用算法原理
本资源解析数据挖掘领域常见算法,例如决策树、聚类等,阐述其原理和应用。
决策树: 通过树状结构进行决策,每个节点代表一个属性测试,每个分支代表测试结果,最终叶子节点代表决策结果。
聚类: 将数据集中的对象根据相似性进行分组,同一组内的对象彼此相似,不同组之间的对象差异较大。
数据挖掘
13
2024-05-21
序列模式挖掘中的AprioriAll算法案例
介绍了序列模式挖掘领域中的AprioriAll算法,探讨其在数据分析中的应用。AprioriAll算法是一种经典的序列模式挖掘算法,通过对数据序列进行频繁模式的发现,帮助分析师深入了解数据之间的关联规律。
数据挖掘
16
2024-08-08
数据挖掘算法与模式识别
数据挖掘算法和模式识别的学习资源丰富,尤其是这本书,适合想要深入了解数据挖掘的人。如果你对BLS模式识别感兴趣,可以看看这篇文章:基于 BLS 的模式识别算法探索,了 BLS 的应用,直观。还有一些关于模式识别的经典文献,比如:模式识别导论概论,适合新手,嗯,理论基础扎实。如果你用Matlab做数据,Matlab 实现模式识别中的 Fisher 算法这篇也挺有用,代码示例给得清晰。在数据挖掘领域,序列模式也是一个有意思的话题,文章序列模式-数据挖掘算法解析就详细地了它的应用。如果你对空间数据有需求,可以参考空间数据探索与模式识别这篇,内容有深度。这些资料都挺适合需要实际操作的开发者,尤其是如果
数据挖掘
0
2025-06-14
序列模式挖掘研究综述
对序列模式挖掘的研究进行概述,涵盖其相关概念、常用方法、代表性算法及其优缺点分析,并展望未来发展方向,为研究者改进现有算法和开发新算法提供参考。
数据挖掘
9
2024-05-16
深入探究数据模式:图挖掘与序列挖掘
数据挖掘算法:揭示隐藏关联
数据挖掘领域涵盖多种强大的算法,用于揭示数据中隐藏的模式和关系。其中,图挖掘和序列挖掘是两种特别有效的技术,可应用于各种场景。
图挖掘
图挖掘算法分析数据点之间的复杂关系,这些数据点通常表示为节点和边。此类算法可用于:
社交网络分析:识别社区、影响者和异常行为。
推荐系统:根据用户之间的关系和交互推荐产品或服务。
欺诈检测:发现异常交易模式和潜在的欺诈行为。
序列挖掘
序列挖掘算法分析数据点随时间推移发生的顺序模式。此类算法可用于:
客户行为分析:理解客户旅程并预测未来行为。
生物信息学:识别 DNA 或蛋白质序列中的模式。
预测性维护:根据设备的历史性能数据
数据挖掘
33
2024-04-30