本项目讨论了聚类算法及其在Python中的实现方式,特别是K均值和模糊C均值算法。我们采用了最小-最大归一化方法来优化数据处理过程。
数据挖掘项目2利用最小-最大归一化实现K均值和模糊C均值聚类算法
相关推荐
Matlab实现K均值与模糊C均值聚类及其可视化
使用Matlab对随机生成的数据进行聚类分析,分别采用K均值聚类和模糊C均值聚类方法。
K均值聚类:* 距离计算方法:默认采用欧式距离(sqeuclidean),可选用曼哈顿距离(cityblock)、余弦距离(cosine)、相关系数距离(correlation)以及汉明距离(hamming,仅适用于二分类变量)。* 可选参数:'Streams'和'UseSubstreams',用于设置数据流,需重新设置数据。* 输出结果:* 各变量的簇心位置;* 簇内点到质心距离之和;* 各点在不同距离计算方法下到质心的距离;* 基于不同距离计算方法的聚类结果;* silhouette系数用于评估聚类合理
统计分析
18
2024-05-23
K均值聚类算法
这份文档包含了用于图像分割的K均值聚类算法的Matlab程序代码。
算法与数据结构
9
2024-07-17
模糊C均值聚类算法在数据挖掘中的应用
模糊C均值(FCM)聚类算法是数据挖掘中一种广泛应用的方法,与传统的K-Means算法相比,FCM允许数据点模糊地属于多个类别,特别适用于处理边界不清晰、类别重叠的数据集。算法通过迭代更新聚类中心和数据点的隶属度,以加权平均值反映数据点对每个类别的归属程度。FCM在图像分割、文本分类和市场细分等领域有着广泛的应用。
数据挖掘
10
2024-07-18
Matlab开发模糊C均值聚类
这个函数详细介绍了图像处理中模糊C均值聚类的应用。
Matlab
13
2024-07-30
K均值聚类算法源码(MATLAB)
提供MATLAB实现的K均值聚类算法源码。
Matlab
18
2024-05-19
克服K-均值聚类的限制-聚类分析数据挖掘算法
克服K-均值聚类的限制原始点ttttK均值簇一种方法是使用尽可能多的簇,然后执行合并操作
数据挖掘
10
2024-08-01
Matlab实现K均值和谱聚类算法的比较分析
使用Matlab编写了K均值和谱聚类算法的基本实现。数据集包含300个二维坐标点,用于分类和分析比较两种算法的效果和性能。
Matlab
13
2024-07-15
顺序k均值算法实现
本项目通过分析不同背景舞者的动作模式,探寻舞蹈中肢体的语言,揭示舞者的动作特征。
该项目采用聚类技术(主要是k均值)分析动作模式,并使用k均值的变体——顺序k均值算法进行在线聚类,集成到实时交互式舞蹈表演组件中。
计算系统根据舞者的训练识别模式,形成反馈循环,促进舞者与机器的交流。该系统使用定制数据库,突出不同运动形式的差异,并重视运动选择过程。
Matlab
11
2024-05-26
深入k-均值聚类
这篇论文深入探讨了k-均值聚类算法,涵盖了其核心原理、算法步骤以及应用场景。此外,还分析了k-均值算法的优势和局限性,并讨论了如何优化算法性能,例如选择合适的k值和初始聚类中心点。
数据挖掘
14
2024-05-15