在数据仓库与数据挖掘领域,星型结构的实例展示了Sales Fact Table中的time_key、item_key、branch_key、location_key、units_sold、dollars_sold以及avg_sales等指标。时间维度包括time_key、day_of_the_week、month、quarter和year;地理位置维度则包括location_key、street、city、province_or_state和country;商品维度包括item_key、item_name、brand、type和supplier_type;最后,分支机构维度涵盖了branch_key、branch_name和branch_type。
数据仓库与数据挖掘的星型结构示例
相关推荐
数据仓库与数据挖掘原理及应用的雪花结构示例
雪花结构的实例,销售事实表时间键、商品键、分支机构键、位置键、销售单位、销售额、平均销售额等度量指标,时间键按星期、月份、季度、年度进行分类,位置键按街道、城市键、地点进行分类,商品键按商品名称、品牌、类型、供应商键进行分类,分支机构键按分支机构名称、分支类型、分支机构供应商键进行分类,位置按城市键、省份/街道、国家和城市进行分类。
数据挖掘
12
2024-08-05
数据仓库与数据挖掘
数据仓库将数据转化为可供分析的信息,而数据挖掘从这些数据中提取模式和趋势,两者结合可为决策提供支持。
数据挖掘
22
2024-05-13
数据仓库与数据挖掘技术
这是一份关于数据仓库和数据挖掘技术的文档,希望对您有所帮助。
数据挖掘
18
2024-05-15
数据仓库与数据挖掘概览
信息技术普及后,企业运用管理信息系统处理事务与业务,积累了大量信息。为辅助管理决策,企业需要特殊工具从数据中提取知识,促进了数据环境需求和数据挖掘工具的发展。
数据挖掘
16
2024-05-23
星型雪花模型实例:数据挖掘技术与应用
星型雪花模型实例:
事实表:- 销售事实表(Sales Fact Table):time_key、item_key、branch_key、location_key、units_sold、dollars_sold、avg_sales- 发货事实表(Shipping Fact Table):time_key、item_key、shipper_key、from_location、to_location、dollars_cost、units_shipped
维度表:- 时间维度(time):time_key、day_of_the_week、month、quarter、year- 位置维度(locati
算法与数据结构
10
2024-05-01
数据架构:数据仓库与数据挖掘
数据仓库和数据挖掘在数据架构中扮演着重要角色。数据仓库负责存储大量历史数据,而数据挖掘则从中提取有价值的信息。
数据挖掘
12
2024-05-28
数据仓库与数据挖掘的深入解析
数据仓库与数据挖掘是信息技术领域中的重要组成部分,它们在当今大数据时代扮演着至关重要的角色。数据仓库是企业决策支持系统的基础,而数据挖掘则是一种从海量数据中发现有价值信息的技术。接下来,我们将深入探讨这两个概念及其相关知识。数据仓库是一个专门为分析性查询设计的、集成的、非易变的且随时间变化的数据集合。它为企业提供了单一的、一致的数据视图,使得决策者可以高效地访问和分析历史数据。数据仓库通常由四个主要组件构成:源系统、提取、转换和加载(ETL)、数据仓库服务器和前端工具。源系统是数据仓库的数据来源,如各种业务系统;ETL过程负责从源系统中抽取数据、清洗和转换,然后加载到数据仓库中;数据仓库服务器
数据挖掘
14
2024-10-31
星型模式示例数据仓库基础入门
星型模式示例销售事实表 time_key item_key branch_key location_key units_sold dollars_sold avg_sales Measures time_key day_of_the_week month quarter year time location_key street city state_or_province country location item_key item_name brand type supplier_type item branch_key branch_name branch_type branch
Oracle
14
2024-07-16
数据仓库与数据挖掘的本质探究
数据仓库与数据挖掘的本质探究
数据仓库和数据挖掘作为数据库系统中的重要概念,两者紧密相连,却又存在本质区别。
数据仓库,顾名思义,是数据的仓库,它从多个数据源收集、清洗、转换和整合数据,为用户提供统一的数据视图,以支持复杂的查询分析和决策。数据仓库的构建重点在于数据的存储和组织,目标是构建一个可靠的、高效的数据平台。
数据挖掘则侧重于从海量数据中发现隐藏的模式、关系和趋势。它利用统计学、机器学习等算法,对数据仓库中的数据进行分析和挖掘,提取出有价值的信息,为决策提供支持。
简而言之,数据仓库是“粮仓”,而数据挖掘则是“淘金术”。数据仓库为数据挖掘提供了丰富的数据基础,而数据挖掘则赋予了数据仓库
数据挖掘
14
2024-05-27