雪花结构的实例,销售事实表时间键、商品键、分支机构键、位置键、销售单位、销售额、平均销售额等度量指标,时间键按星期、月份、季度、年度进行分类,位置键按街道、城市键、地点进行分类,商品键按商品名称、品牌、类型、供应商键进行分类,分支机构键按分支机构名称、分支类型、分支机构供应商键进行分类,位置按城市键、省份/街道、国家和城市进行分类。
数据仓库与数据挖掘原理及应用的雪花结构示例
相关推荐
数据仓库与数据挖掘原理及实战应用
数据仓库和数据挖掘的入门书,内容挺全的,适合刚上手或想系统回顾下这块的前端朋友。三大部分讲得蛮清楚:数据仓库怎么设计、建模、搭 OLAP;数据挖掘算法怎么跑、场景怎么落地;还有移动通信行业的案例,实战参考价值比较高。书里对星型模型、雪花模型这些结构有图解,读起来还挺顺;ETL 工具也有,像Talend、Informatica,搭配PowerDesigner建模,直接能上项目。嗯,虽然作者说还没看完,但内容确实比较系统,适合想搭建企业级数仓+系统的朋友。有点数据基础就能啃,强烈建议配合工具边看边练。如果你正好做 BI 前端或数据可视化,建议看看第二部分挖掘算法那块,能帮你更懂后端在搞啥,配合也更
数据挖掘
0
2025-06-17
SAS/EM数据仓库与数据挖掘原理及应用
SAS/EM数据获取工具允许用户通过对话框指定数据集名称及数据挖掘中所需变量。变量主要分为两类:区间变量(Interval Variable),用于统计处理;这些变量在数据输入阶段可设定最大值、最小值、平均值、标准差等统计指标,并检查缺漏值百分比。这些设定可在数据获取初期即进行质量检查,提供数据质量预览。
数据挖掘
14
2024-07-17
算法比较数据仓库与数据挖掘原理及应用
算法工具的横向对比挺少见的,尤其是把数据仓库和数据挖掘主流平台像Clementine、Darwin、Enterprise Miner、Intelligent Miner这些放一块来的。对你要选工具做项目还是了解各家强项,参考价值都挺高。
决策树、神经网络、回归、聚类这些主力算法,在不同平台上支持情况不一样。有的全都有,有的比如PRW,就偏轻量,支持的算法蛮少。你要是正在纠结选哪家工具,不妨看看这个对比表。
顺手给你推荐几篇蛮实用的文章,像 MapReduce 决策树研究 这篇,用大数据场景跑树模型;还有 构建决策树模型,从思路到代码讲得比较清楚,适合入门。如果你是 Python 党,可以直接上
数据挖掘
0
2025-06-14
数据预测数据仓库与数据挖掘原理及应用
数据预测其实挺有意思的,尤其是在做数据仓库和数据挖掘相关的工作时。你如果需要更好地理解这块,可以看看这篇《数据仓库与数据挖掘原理及应用》。它对数据预测的核心原理做了好的阐述,内容不难,挺适合入门或者有一定基础的同学。对于数据仓库的架构、数据模型的设计以及如何从海量数据中挖掘有价值的信息,文章都给出了多实用的案例。文章里的资源链接也挺有,推荐你去看看,是对你理解数据挖掘有大哦。
其中的一些技术比如数据仓库和数据挖掘,其实是当今大数据的基础。数据仓库负责把数据有条理地存储起来,而数据挖掘就是从这些数据里找出隐藏的模式。你可以想象一下,比如你要预测未来某种产品的销量,数据仓库能历史数据,数据挖掘则你
数据挖掘
0
2025-06-11
数据仓库与数据挖掘的星型结构示例
在数据仓库与数据挖掘领域,星型结构的实例展示了Sales Fact Table中的time_key、item_key、branch_key、location_key、units_sold、dollars_sold以及avg_sales等指标。时间维度包括time_key、day_of_the_week、month、quarter和year;地理位置维度则包括location_key、street、city、province_or_state和country;商品维度包括item_key、item_name、brand、type和supplier_type;最后,分支机构维度涵盖了branch_
数据挖掘
10
2024-07-16
数据仓库与数据挖掘的原理及应用框架分析
围绕数据仓库与数据挖掘的应用进行深入探讨,分析其核心原理及实际应用场景。
数据挖掘
16
2024-09-13
数据仓库与数据挖掘原理及应用中ETL的过程
数据仓库与数据挖掘中,ETL过程是关键步骤,包括抽取、转换、装载数据到临时存储区,所有操作都由元数据驱动。
数据挖掘
14
2024-08-05
创新的预测技术-数据仓库与数据挖掘的原理及应用
创新的预测技术包括趋势外推法、时间序列法和回归分析法等多种算法,这些方法理论成熟,通过标准技术分析模型参数。7.1章节概述了这些技术。
数据挖掘
17
2024-08-24
数据仓库原理及应用
仓库管理通过外购工具或自定义程序实现数据仓库管理,自动化程度决定了程序复杂性。
数据挖掘
14
2024-05-14