数据仓库是企业信息技术中的重要组成部分,专门用于存储和管理大规模历史数据,以支持高效的数据分析和决策。清华大学出版的《数据仓库教程》由陈文伟教授撰写,系统介绍了数据仓库的核心理论、设计原则及实际应用。书中详细解释了数据仓库与在线事务处理系统的区别,强调了其在决策支持方面的重要性。涵盖了数据抽取、转换、加载(ETL)、数据建模(星型模型、雪花模型)、以及现代工具如云数据仓库和大数据处理框架对数据仓库的影响。此外,还探讨了性能优化策略和实际案例,帮助读者理解和应用所学内容。通过本书,读者能够全面掌握数据仓库的设计与实施,提升数据驱动决策的能力。
数据仓库概论与应用
相关推荐
数据仓库介绍与应用
数据处理的分类,数据仓库的历史、概念及特点,数据仓库系统的体系结构以及数据仓库的实际应用。
Oracle
16
2024-07-30
Oracle 数据仓库设计与应用
本幻灯片演示详细阐述了使用 Oracle 设计和部署数据仓库的方法。
Oracle
10
2024-05-25
数据仓库应用的范围-BI数据仓库培训
在数据仓库应用的范围中,IT人员为业务用户开发支持独立分析的系统,满足不同用户群体的需求。主要应用包括:
专业分析人员:为这些用户提供复杂分析工具和资源。
标准报表:针对常规数据分析需求,提供稳定的报表输出。
即席查询分析:为用户提供灵活、实时的查询分析功能,支持即时决策。
复杂分析:通过深度分析工具,帮助专业人员进行数据挖掘和高级分析。
Oracle
11
2024-11-05
数据仓库数据挖掘技术与应用
数据仓库的核心,就是把来自不同地方的数据整合成一个“统一大脑”。嗯,挺像写前端时,把组件状态汇总到一个大状态管理库一样,方便后续。你在搞数据挖掘之前,基本都会先来一套这个流程:数据清理、数据集成、数据变换。这些听着高大上,其实就像格式化接口数据、合并字段、统一命名那一套操作,蛮实用的。有了数据仓库,接下来你就能用OLAP来做各种维度的,比如用户在哪个地区下单最多、哪天的流量最高。它的特点就是查询快、结构清晰,像前端里的缓存+图表那种组合拳,效率飙升。如果你对数据挖掘感兴趣,建议看看下面这几个资源,写得还不错,基本该讲的都讲到了:数据仓库、OLAP 和数据挖掘技术指南,适合刚入门的你多维数据模型
数据挖掘
0
2025-06-24
分析型处理数据仓库介绍与应用
型是决策的利器,适合 DSS、EIS 等场景,决策者洞察数据背后的趋势。过程中往往涉及大量历史数据和复杂查询,还需要访问外部数据源。你会用到数据仓库,它能你高效管理这些数据,尤其是配合 OLAP 进行多维。你可以借助数据仓库来挖掘潜在的商业机会,提升决策的精准度。数据仓库的设计也蛮重要,像星型结构的运用就是常见的优化手段,它能显著提高查询效率。你也许会遇到 Hive 的配置问题,建议你认真调试,确保大数据量顺畅。如果你想了解更多技术细节,可以参考相关的文章,是数据仓库与 OLAP 的结合,以及数据挖掘技术的应用,都会让你对这个话题有更深的理解。
Oracle
0
2025-06-24
客户发展数据仓库设计与挖掘应用
客户数据的多维切片,配上经典的数据仓库设计,读起来还挺有意思。嗯,主要讲的是怎么按性别、年龄、入网时间这些维度,把用户分成不同的群体,再他们用服务的习惯。这个套路在电信行业常见,数据一多,用肉眼看真没啥用,得靠数据仓库那一套来帮你分门别类。
客户群的自然属性分类挺直观的,比如性别、年龄段,还有那种用户类型——像公费、私人,这些标签在建模时都有用。你要是做用户画像或者客户细分,拿这些字段来喂模型,效果还不错。
数据仓库设计这部分也讲得挺扎实,没整太玄的词,主要就是围绕业务来建模,比如用星型模型,先搭好维度表和事实表的框架,再根据你要的指标一步步填。你只要理解了它的出发点是为了方便,整个设计就不难
数据挖掘
0
2025-06-25
数据仓库原理及应用
仓库管理通过外购工具或自定义程序实现数据仓库管理,自动化程度决定了程序复杂性。
数据挖掘
14
2024-05-14
Oracle数据仓库应用案例
ORACLE 的数据仓库案例,蛮值得前端开发者留意一下,尤其是你做可视化或对接后台数据的时候。法国电信、新西兰电信这些老牌企业都在用,它稳定性和扩展性确实在线。不少场景是那种大数据量的批,读写压挺大,但系统还是扛得住,底子厚。你可以看看这些案例,脑子里有个印象,之后项目涉及到 Oracle 的时候会更从容。
Oracle
0
2025-07-03
数据仓库与数据挖掘技术应用探索
加载管理器的功能包括支持数据抽取和加载,实现途径有外购的软件工具和根据特殊需求编写的程序、存储过程及脚件。
数据挖掘
19
2024-10-11