这个文件夹包含了三篇论文的代码:1. Vijayarajan R&Muttan S的《基于离散小波变换的医学图像平均主成分平均融合》,发表于《国际电子和通讯杂志-AEU》;2. Vijayarajan R&Muttan S的《基于模糊C均值聚类的主成分平均融合》,发表于《国际模糊系统杂志》;3. Vijayarajan R和Muttan S的《医学图像融合平均的迭代块级主成分》,发表于《国际光与电子光学杂志》。主文件为main.m,是融合方法的关键代码。数据集来自哈佛医学院的AANLIB,使用了DWT-PCA和基于FCM的平均主成分融合方法。
MATLAB代码图像融合中的主成分平均方法
相关推荐
基于Matlab的主成分分析代码实现
Matlab代码实现了主成分分析(PCA)方法。
Matlab
12
2024-08-18
图像处理中的主成分分析技术应用
在图像处理领域,主成分分析(PCA)是一种广泛使用的降维技术,通过线性变换将高维数据转换为一组按方差递减排序的新坐标系统,有助于减少数据复杂性,保持大部分信息。应用PCA时,首先对图像进行预处理,如灰度化、归一化等,确保数据尺度一致。然后,将图像矩阵视为多维数据样本集,计算均值、协方差矩阵、特征值分解,选择主成分并进行投影变换。描述中提到显示第一主成分信息,这反映了对图像主要特征的关注和理解。操作包括增强或抑制第一主成分影响力,压缩与恢复图像,以及利用异常检测监测变化。文件名为\"KL\"的压缩包可能包含执行PCA的代码示例、结果图像或KL散度的相关资料。
算法与数据结构
8
2024-07-18
MATLAB图像融合的实现方法
详细介绍了MATLAB程序实现图像融合的多种方法,内容简洁清晰,易于理解,为读者提供实用帮助。
Matlab
13
2024-09-28
MATLAB实现的主成分分析法源代码
这是用MATLAB实现的主成分分析法的源代码,包含了数据,可以直接运行。
Matlab
13
2024-07-15
matlab主成分分析的开发
matlab主成分分析的开发。主成分分析在数据分析中起着重要作用。
Matlab
16
2024-08-22
主成分分析简介与方法详解
主成分分析(PCA)是一种常见的无监督学习方法,通过正交变换将高维度数据转换为少数几个线性无关的低维度特征。它在数据科学和机器学习中被广泛应用,发现数据中的基本结构和变量间的关系。介绍了总体主成分分析和样本主成分分析两种方法,以及其核心算法:相关矩阵的特征值分解和矩阵奇异值分解(SVD)。此外,还介绍了Python库中的sklearn.decomposition.PCA模块,用于实现主成分分析及其在数据预处理中的应用。
统计分析
15
2024-07-18
数据标签主成分分析实验PCA主成分提取
我们目前有一个数据文件‘Country-data.xlsx’,包含10列数据。第1列是国家名称,其余九列X1~X9是数字类型的数据标签。我们需要进行主成分分析,确保累计贡献率达到90%,并输出它们的特征向量和贡献率属性。
数据挖掘
17
2024-10-17
使用Matlab进行主成分分析的程序代码
这是Matlab中用于计算主成分的代码,包括详细的语句注解,方便直接使用。
Matlab
14
2024-07-27
主成分分析
该压缩文件包含了有关主成分分析的信息和资源。
Hadoop
23
2024-05-13