我们目前有一个数据文件‘Country-data.xlsx’,包含10列数据。第1列是国家名称,其余九列X1~X9是数字类型的数据标签。我们需要进行主成分分析,确保累计贡献率达到90%,并输出它们的特征向量和贡献率属性。
数据标签主成分分析实验PCA主成分提取
相关推荐
PCA主成分分析指南
本指南全面讲解了主成分分析技术,提供深入解析和实用案例,适合初学者深入理解PCA原理和应用。
数据挖掘
21
2024-05-01
PCA主成分分析法
主成分法的代码写得挺简洁的,尤其适合想快速上手 PCA 的你。思路也清晰:先规范化,再搞协方差矩阵,就求特征值和特征向量。核心主成分一眼就能挑出来,投影重构那块也挺好理解的。
PCA 的核心就是把高维数据“压扁”,但又不丢太多信息,挺适合图像压缩、特征提取这些场景。线性方法虽老但好用,配合 MATLAB 的pca函数,用起来效率也不低。
比如下面这段代码:
%创建一个数据矩阵
X = [1 2 3 4 5;1 3 2 5 4];
X = X';
[coeff, ~, latent] = pca(X);
[i] = max(latent);
P = coeff(:,i);
Y = P'*X;
用
算法与数据结构
0
2025-07-02
主成分分析
该压缩文件包含了有关主成分分析的信息和资源。
Hadoop
23
2024-05-13
学生成绩主成分分析PCA应用
学生成绩的 PCA 代码,用起来还挺顺。思路清晰,变量和可视化都安排得明明白白,适合刚接触主成分的你。不用太多额外库,numpy 和 matplotlib 基本搞定,简洁也挺好上手。尤其是通过文化课成绩和综测成绩来找共性,这种教育类数据,实战价值高。
用 PCA 学生成绩,最常用的场景就是降维。比如你想知道文化课平均分和综测成绩哪个更能代表学生综合素质?PCA 就派上用场了。
数据预这块也不复杂,先标准化,用的就是经典的 Z-score。算 协方差矩阵,再用 np.linalg.eig() 拿到 特征值和特征向量,也就是主成分的关键。
如果你发现第一个主成分就能解释大部分方差,那就俩成绩挺像的
统计分析
0
2025-06-17
主成分分析:降维利器
想象一个高斯分布,它的平均值位于 (1, 3),在 (0.878, 0.478) 方向上的标准差为 3,而在正交方向上的标准差为 1。黑色向量表示该分布协方差矩阵的特征向量,其长度与对应特征值的平方根成比例,并移动到以原始分布平均值为原点。
主成分分析 (PCA) 是一种强大的降维技术,广泛应用于多元统计分析。它通过识别并保留对数据方差贡献最大的主成分,在降低数据维度的同时最大程度地保留数据信息。
统计分析
14
2024-05-21
SPSS主成分分析讲义
确定因子变量的主成分讲义,内容挺系统,适合想用SPSS搞明白 PCA 的朋友。讲义从变量筛选到解释维度,流程清楚不啰嗦,配套图表也比较直观,学起来还挺。
主成分算是降维里比较经典的招了,用来提炼几个代表性因子,替代原始一堆变量。比如问卷调查里 20 个问题,跑一遍 PCA,搞不好就能归成 3-4 个因子。
文档里搭配的案例挺贴地气的,都是实际数据,不是那种照本宣科的风格。你要是刚接触因子或者搞不清楚成分提取和旋转的逻辑,这讲义就挺有用了。
除了讲义,下面这些相关资料也推荐一起看,补全知识点:
主成分 - 概念入门蛮清晰
降维利器 - 降维逻辑讲得不错
Python 机器学习:主成
统计分析
0
2025-07-01
深入解析主成分分析 (PCA) 的数学基础
深入解析主成分分析 (PCA) 的数学基础
主成分分析 (PCA) 是一种强大的降维技术,广泛应用于数据分析和机器学习领域。其核心思想是将高维数据集转换为低维数据集,同时保留尽可能多的原始信息。
PCA 的基本算法步骤:
数据标准化: 将原始数据矩阵进行标准化处理,使每个特征的均值为0,方差为1。
计算协方差矩阵: 计算标准化后的数据矩阵的协方差矩阵。
特征值和特征向量: 计算协方差矩阵的特征值和对应的特征向量。
选择主成分: 根据特征值的大小对特征向量进行排序,选择前 k 个特征向量作为主成分。
数据降维: 将原始数据投影到选定的 k 个主成分上,得到降维后的数据矩阵。
PCA 的数学原
数据挖掘
14
2024-05-25
主成分分析PCA数据降维与可视化
统计里的主成分,挺适合用来变量多又杂的数据场景。简单说就是把一堆变量变成几个关键因素,既压缩了维度,又保留了大部分信息。PCA用得好,数据可视化更清晰,模型表现也更稳。
PCA 的思路其实不复杂,就是通过正交变换把原始变量“换个角度”看。换出来的新变量叫主成分,彼此不相关,信息还集中,第一主成分通常就能解释掉大半的信息量。
你要是做多变量,比如问卷、成分评分那类,PCA 真的挺好用的。不光降维快,后续做聚类、分类这些操作也方便多了。像在Python里配合sklearn用,PCA()函数一调,搞定降维。
如果你喜欢看原理,也推荐看看Karl Pearson和Hotelling的经典思路。顺便一提
统计分析
0
2025-06-23
princomp MATLAB主成分分析函数
主成分(PCA)是个强大的统计工具,尤其适合高维数据的降维。MATLAB 的princomp函数就是专门用来实现 PCA 的。它的工作原理简单明了,就是通过线性变换把数据从高维空间压缩到低维空间,同时尽量保留数据的主要信息。通过princomp,你可以轻松计算出每个主成分的系数、得分和方差贡献率,进而优化数据结构。
比如,当你有一大堆多维数据,需要找到主要的变化方向时,princomp的输出就能帮你搞定。coef给你的是新坐标系的变换矩阵,score则是样本在新坐标下的投影。通过这些,你可以把新数据投影到主成分空间,甚至还可以反向变换回原始特征空间,挺方便的。
实际应用中,这个函数广泛用于数据
SQLite
0
2025-06-13