数据挖掘是数据库系统应用与发展中不可或缺的研究课题,其作为从海量数据中提取有价值知识的有效工具得到广泛应用。本研究分析了学校信息化进程中数据积累的现状,并探讨了各种数据挖掘技术在此过程中的应用。同时提出了适用于学校的数据挖掘体系结构模型。
校园信息化中数据挖掘技术的应用研究 (2008年)
相关推荐
客户管理中的数据挖掘技术应用研究
数据挖掘技术是从大量、无序、静态的数据中发现有价值规律和模式的过程。在分析了数据挖掘技术的应用特点后,探讨了客户管理的独特需求。讨论了算法选择、模型构建、工具应用等关键环节,提出了在客户管理中应用数据挖掘技术的实用方案。最后进行了简要的效果评价与分析,对类似应用具有参考价值。
数据挖掘
12
2024-10-20
基站巡检系统中的数据挖掘技术应用研究
随着通讯事业的迅速发展,基站的正常运转至关重要。为保障基站工作的可靠性与稳定性,需要进行安防巡检和设备故障排除。数据挖掘技术在基站巡检系统中的应用,成为提升效率的重要工具。研究发现,这些技术不仅能有效减少巡检成本,还能提前预测设备故障,有力支持通讯网络的持续运行。
数据挖掘
10
2024-07-17
商业银行中数据挖掘技术的应用研究
商业银行中有多种数据挖掘技术的应用方法正在研究中。
数据挖掘
16
2024-07-17
大型超市中的数据挖掘技术应用研究
随着商业环境的复杂化,大型超市越来越多地采用数据挖掘技术来优化运营和提升客户体验。这些技术不仅帮助超市管理者更好地理解消费者行为和趋势,还能够精确预测需求,优化库存管理,从而提高销售效率。数据挖掘技术的引入,标志着大型超市在迎接市场竞争和消费者需求方面迈出了重要的一步。
数据挖掘
10
2024-08-08
电子商务中数据挖掘的应用研究
这篇论文深入探讨了数据挖掘在电子商务系统中的重要性,适合正在撰写毕业论文的同学参考。
数据挖掘
11
2024-07-17
数据挖掘中的并行处理技术与应用研究
数据挖掘与知识发现
定义: 数据挖掘是一种从大量数据中自动搜索隐藏于其中的信息和知识的过程。
目的: 发现有价值的信息来辅助决策制定。
应用场景: 商业智能、市场分析、客户关系管理等。
数据挖掘面临的挑战
大数据挑战: 随着数据量的增加,传统的单机数据处理方式难以满足实时性要求。
计算资源消耗: 大规模数据集的处理需要大量的计算资源。
响应时间: 对于大规模数据集的数据挖掘,响应时间较长。
并行数据挖掘
并行计算基础: 并行计算是利用多台计算机同时处理任务的技术,可以显著提高处理速度。
优势: 减少处理时间、提高数据处理能力、增强模型的准确性。
关键技
数据挖掘
9
2024-11-07
NJW在离群数据挖掘中的应用研究
Web 序列模式挖掘的玩法挺有意思,WAP 算法算是老牌选手了,不过论文研究-NJW 在离群数据挖掘中的应用研究.pdf里讲了个小改进,挺实用。嗯,少了条件树那道坎,跑得快,代码也简单,适合做二次开发。
序列模式挖掘里,PrefixSpan也比较火,跟 WAP 对比着学效果更好。要是用Python撸个小工具,推荐看下Python 编程实现序列模式挖掘算法,样例清晰。
搞离群数据挖掘,别忘了性能,改算法的时候多打点日志,看看运行时间和内存。哦,对了,顺手可以看下序列模式挖掘研究综述,对比一下方法。
如果你要在生产上跑,记得条件树越少越稳,数据量大的话,不如先用PrefixSpan跑小样本测测。
数据挖掘
0
2025-06-29
Web挖掘技术在CRM中的应用研究
Web 挖掘技术在 CRM 中的应用真的是一个挺有意思的话题。通过用户行为、页面结构以及内容信息,Web 挖掘能够企业更好地理解客户需求,从而提升客户关系管理的效果。比方说,利用 Web 使用模式挖掘,企业可以精准了解客户的浏览习惯和购买偏好,进而制定个性化的营销策略。对于 CRM 系统来说,这意味着能够为客户更有针对性的服务和商品推荐,提升用户体验。此外,Web 内容挖掘和 Web 结构挖掘的结合还可以网站之间的关联性,进一步优化企业的营销策略和客户服务。,Web 挖掘在 CRM 中的应用不仅提升了客户的参与度,也优化了企业的决策过程,是一个实用的技术。如果你正在做 CRM 相关的工作,可以
数据挖掘
0
2025-06-24
数据挖掘在电信行业客户生命周期中的应用研究2008年
数据挖掘在客户生命周期中的应用,是在电信行业,挺有意思的。这篇 2008 年的研究探索了如何通过决策树算法来准确判断客户所处的生命周期阶段。你可以发现,多时候客户生命周期的研究偏向定性,而准确定位客户的生命周期阶段,却一直是一个难点。通过数据挖掘,研究者给出了模型的框架,还提出了改进方案,应用前景蛮广的。如果你是做客户的,这个研究能给你一些启发。
数据挖掘
0
2025-06-13