数据挖掘是数据库系统应用与发展中不可或缺的研究课题,其作为从海量数据中提取有价值知识的有效工具得到广泛应用。本研究分析了学校信息化进程中数据积累的现状,并探讨了各种数据挖掘技术在此过程中的应用。同时提出了适用于学校的数据挖掘体系结构模型。
校园信息化中数据挖掘技术的应用研究 (2008年)
相关推荐
客户管理中的数据挖掘技术应用研究
数据挖掘技术是从大量、无序、静态的数据中发现有价值规律和模式的过程。在分析了数据挖掘技术的应用特点后,探讨了客户管理的独特需求。讨论了算法选择、模型构建、工具应用等关键环节,提出了在客户管理中应用数据挖掘技术的实用方案。最后进行了简要的效果评价与分析,对类似应用具有参考价值。
数据挖掘
12
2024-10-20
基站巡检系统中的数据挖掘技术应用研究
随着通讯事业的迅速发展,基站的正常运转至关重要。为保障基站工作的可靠性与稳定性,需要进行安防巡检和设备故障排除。数据挖掘技术在基站巡检系统中的应用,成为提升效率的重要工具。研究发现,这些技术不仅能有效减少巡检成本,还能提前预测设备故障,有力支持通讯网络的持续运行。
数据挖掘
10
2024-07-17
商业银行中数据挖掘技术的应用研究
商业银行中有多种数据挖掘技术的应用方法正在研究中。
数据挖掘
16
2024-07-17
大型超市中的数据挖掘技术应用研究
随着商业环境的复杂化,大型超市越来越多地采用数据挖掘技术来优化运营和提升客户体验。这些技术不仅帮助超市管理者更好地理解消费者行为和趋势,还能够精确预测需求,优化库存管理,从而提高销售效率。数据挖掘技术的引入,标志着大型超市在迎接市场竞争和消费者需求方面迈出了重要的一步。
数据挖掘
10
2024-08-08
电子商务中数据挖掘的应用研究
这篇论文深入探讨了数据挖掘在电子商务系统中的重要性,适合正在撰写毕业论文的同学参考。
数据挖掘
11
2024-07-17
数据挖掘中的并行处理技术与应用研究
数据挖掘与知识发现
定义: 数据挖掘是一种从大量数据中自动搜索隐藏于其中的信息和知识的过程。
目的: 发现有价值的信息来辅助决策制定。
应用场景: 商业智能、市场分析、客户关系管理等。
数据挖掘面临的挑战
大数据挑战: 随着数据量的增加,传统的单机数据处理方式难以满足实时性要求。
计算资源消耗: 大规模数据集的处理需要大量的计算资源。
响应时间: 对于大规模数据集的数据挖掘,响应时间较长。
并行数据挖掘
并行计算基础: 并行计算是利用多台计算机同时处理任务的技术,可以显著提高处理速度。
优势: 减少处理时间、提高数据处理能力、增强模型的准确性。
关键技
数据挖掘
9
2024-11-07
数据挖掘在电信行业客户生命周期中的应用研究2008年
数据挖掘在客户生命周期中的应用,是在电信行业,挺有意思的。这篇 2008 年的研究探索了如何通过决策树算法来准确判断客户所处的生命周期阶段。你可以发现,多时候客户生命周期的研究偏向定性,而准确定位客户的生命周期阶段,却一直是一个难点。通过数据挖掘,研究者给出了模型的框架,还提出了改进方案,应用前景蛮广的。如果你是做客户的,这个研究能给你一些启发。
数据挖掘
0
2025-06-13
回归分析在数据挖掘中的应用研究论文
回归的实战场景挺多的,尤其在做预测模型时管用。工资、房价、气温这类连续变量,用回归来搞,基本就是标配。文章里了从基础概念到常见技术,还带了不少现实应用例子,像市场预测、财务这块,蛮有参考价值的。
Matlab 的回归工具算是比较好上手的,尤其适合初学者练手。你要是用stepwiselm搞逐步回归,效果还不错,变量挑选也方便。文末还有一堆相关资料,像是SPSS里的多元线性回归、Logistic 回归啥的,算是扩展阅读的好料。
不过做回归也不是光套模型。像多重共线性、离群值这些坑,要提前规避。不然就算 R²再高,预测出来也是飘的。建议配合残差看一下,稳得多。
如果你正准备做个基于回归的预测项目,或
数据挖掘
0
2025-06-14
基于数据仓库的油田数据挖掘技术应用研究
为了提取和挖掘出油田大量历史数据背后的“知识”,探索出油田生产中的规律性,从而更有效地进行生产调整和优化,以支持企业的重要决策,提出了基于石油企业历史数据和核心业务的数据仓库多主题数据挖掘系统的实施方案。方案采用MIS系统作为数据源,构建了包含ORACLE底层数据仓库服务器、OLAP服务器等组件的数据仓库。在多主题数据挖掘过程中,通过算法库反复验证,建立了感兴趣的模型库。结合大庆油田采油九厂生产辅助分析系统的应用实例以及其他相关应用,论证了该方案的可行性。
数据挖掘
9
2024-11-07