这本适用于高级本科和研究生数据挖掘课程的教科书,详细阐述了数据挖掘的广泛而深入的概念,并融合了机器学习和统计学的相关原理。
数据挖掘与分析基础理论和算法综述
相关推荐
数据挖掘基础理论
涵盖数据挖掘入门所需的理论知识,适合从事商业智能行业的人士学习。
数据挖掘
14
2024-04-30
数据挖掘基础理论:应用比例
应用比例
聚类 22%
直销 14%
交叉销售模型 12%
数据挖掘
11
2024-05-26
数据仓库与数据挖掘基础理论
数据仓库与数据挖掘综述
作者:朱建秋
日期:2001年6月7日
数据挖掘
11
2024-05-01
参考文献-数据挖掘基础理论
威廉·H·因蒙, “建立数据仓库”, 约翰·威利父子公司, 1996。
约翰·拉德利, “运营数据存储:制定有效策略”, 数据仓库:专家实用建议, 普伦蒂斯·霍尔出版社, 纽泽西州恩格尔伍德悬崖, 1997。
斯蒂芬·R·加德纳, “建立数据仓库”, ACM 通讯, 1998 年 9 月, 第 41 卷, 第 9 期, 52-60。
道格拉斯·哈克尼, Http:// www.egltd.com, DW101:实用概述, 2001
彼得·R·米姆诺, “宏伟蓝图 - 布里欧如何在数据仓库市场中竞争”, 向布里欧技术公司的演示文稿 - 1998 年 8 月 4 日。
亚历克斯·伯森, 斯蒂芬·
数据挖掘
11
2024-04-30
数据挖掘理论与实践综述
本书全面讲述了数据挖掘的概念、方法、技术和最新研究进展,经过全面修订,重点讨论了数据预处理、频繁模式挖掘、分类和聚类等内容。还详细探讨了OLAP、离群点检测以及挖掘网络和复杂数据类型的方法,强调了其在各个重要应用领域中的应用。
数据挖掘
11
2024-08-15
数据挖掘理论与应用研究综述
数据挖掘作为一门从海量数据中提取有用信息的交叉学科,近年来发展迅速,并在各个领域得到广泛应用。将对数据挖掘技术进行全面概述,涵盖其起源、定义、发展历程、研究内容、主要功能、常用技术、常用工具以及未来研究方向等方面。
一、 数据挖掘概述
数据挖掘技术的起源与发展背景
数据挖掘的定义及内涵
数据挖掘的研究历史、现状及发展趋势
数据挖掘的研究内容、本质及与其他学科的关系
二、 数据挖掘技术
数据挖掘的主要功能和目标
常用的数据挖掘技术:关联规则挖掘、分类与预测、聚类分析、异常检测等
各种数据挖掘技术的优缺点比较
不同数据挖掘技术在实际应用中的选择策略
三、 数据挖掘工具与平台
常用的数据挖
数据挖掘
14
2024-07-01
数据学的起源与基础理论
数据学,由朱扬勇教授和熊赟教授编著,详细介绍了数据学的起源、基本概念和基本原理,涵盖了数据大爆炸、数据在自然界中的应用以及数据学的基础。书中还阐述了数据学的主要方法,包括大数据勘探、数据获取和整合、数据挖掘以及数据实验等。
算法与数据结构
14
2024-08-05
数据挖掘的基础理论与实际应用PPT第四章
本章介绍了数据挖掘的基础理论与实际应用,包括决策树分类、贝叶斯分类、K-最近邻分类、集成学习以及回归方法。
算法与数据结构
13
2024-08-08
数据挖掘与OLAP算法综述
随着数据挖掘技术的进步,OLAP(在线分析处理)算法正逐步演化。OLAP主要限于少量维度和数据类型,由用户控制其流程,包括假设、验证和结论。而数据挖掘则在不明确假设的情况下,探索信息并发现知识,具有未知、有效和实用的特点。它能自动发现隐藏在数据中的规律,比OLAP更复杂和细致。数据挖掘的归纳过程通过发现未知的联系,丰富了分析的结论。
数据挖掘
14
2024-07-14