目前,链路预测研究主要关注于无向网络,然而现实世界中的大量有向网络,如果忽略链路方向将导致信息丢失甚至预测失真。为解决这一问题,本研究提出了一种基于三元组的有向网络链路预测算法。该算法利用势理论筛选三元组,分析闭合概率以计算节点相似性权重。实验结果显示,在9个真实数据集上,新方法的预测精度比基准方法提高了4.3%。
基于三元组结构的有向网络链路预测方法优化
相关推荐
RDF三元组挖掘电子商务竞争者
互联网上的商家通过利用RDF三元组的语义和结构特征,能够检测出具有竞争关系的商家,并利用淘宝网的商店数据,通过MapReduce工具提高处理效率,从而调整经营策略。
数据挖掘
12
2024-05-16
三元组稀疏矩阵加减法的C语言实现
在数据结构的实验七中,我们探讨了三元组稀疏矩阵的加减法,通过C语言编程实现了相关代码。
算法与数据结构
11
2024-07-13
play_match_the_color_game匹配RGB或YIQ三元组的MATLAB开发
%见Cleve's Corner博客: % https://blogs.mathworks.com/cleve/2018/06/11/play-match-the-color-game
Matlab
12
2024-11-04
用卷积滤波器Matlab代码-训练三元神经网络
本存储库已发布,复现Hande Alemdar、Vincent Leroy、Adrien Prost-Boucle和Frederic Petrot在“用于资源高效的AI应用程序的三元神经网络”国际神经网络联合会议(IJCNN)2017年发表的结果。该存储库提供了学生网络的培训代码,并包括分层代码的详细说明。安装要求包括以下Python软件包:git clone https://github.com/caldweln/distro.git ~/torch --recursive,cd ~/torch;TORCH_LUA_VERSION=LUA51 ./install.sh;source inst
Matlab
7
2024-10-01
Matlab编写三元哈夫曼编码
这份代码详细展示了如何使用Matlab实现三元哈夫曼编码,并且每一步都有清晰的注释,让您轻松理解。
Matlab
11
2024-09-19
复杂网络链路预测:前沿趋势与展望
链路预测方法的新趋势
基于结构相似性:
这类方法简单易行,计算复杂度低,尤其依赖局部结构的算法。
挑战:
不同算法在不同网络中的预测能力差异巨大。
缺乏对算法性能与网络结构特征之间关系的深入研究。
针对复杂网络(如含权网络、有向网络、多部分网络等)的结构信息预测研究不足。
未来方向:
建立以网络系综理论为基础的链路预测理论框架。
通过网络结构统计分析,估算预测方法的可预测极限,指导最佳方法选择。
基于最大似然估计:
局限性:
计算复杂度高,难以应用于大规模网络。
预测精度有限。
概率模型:
优势: 综合考虑网络结构信息和节点属性信息,力求更精准的预测。
局限性:
计算复
数据挖掘
15
2024-05-23
alchemyst/ternplot 利用Matlab绘制三元相图数据
alchemyst/ternplot是一个Matlab工具,专门用于绘制三元相图数据。
Matlab
8
2024-08-27
基于有向项集图的最大频繁项集挖掘算法
本算法基于有向项集图存储事务数据库中频繁项集信息,采用三叉链表结构组织有向项集图,并在此基础上提出最大频繁项集挖掘算法。该算法一次扫描事务数据库,有效减少I/O开销,适用于稀疏和稠密数据库的最大频繁项集挖掘。
数据挖掘
16
2024-05-31
MATLAB负荷预测基于人工神经网络(ANN)的预测方法
MATLAB负荷预测是一种基于人工神经网络(ANN)的先进预测技术。该方法利用MATLAB软件平台,通过分析历史数据和模式识别,实现对电力系统负荷未来趋势的精确预测。这种技术不仅提高了预测的准确性,还能帮助电力管理者优化资源分配和能源利用效率。
Matlab
8
2024-08-25