近年来,数据挖掘在信息产业界引起了极大的关注,主要由于数据量巨大且具有广泛的适用性,急需将这些数据转化为实用的信息。于飞和顾宏研究了基于距离学习的集成KNN分类器,探索其在数据处理中的潜力。
基于距离学习的集成KNN分类器研究论文
相关推荐
研究论文Android恶意软件检测方案基于最小距离分类器
针对Android手机恶意软件日益增多,应用商店在大规模软件安全性检测上遇到的挑战,提出了一种轻量级恶意软件检测方案。方案首先分析了大量恶意软件和正常软件样本的权限信息,通过去冗余处理权限频率特征,最终采用最小距离分类器进行软件分类。实验结果显示,该方案不仅具备可行性,而且在方案复杂度和检测效果上优于同级别方案,适用于大规模恶意软件的初步检测。
数据挖掘
8
2024-10-15
数据挖掘导论KNN分类器详解
数据挖掘导论(第二版),中文第4章:K最近邻分类器(K-Nearest Neighbor,KNN)是数据挖掘和机器学习领域广泛应用的一种基本分类算法。其核心思想是:如果一个对象与另一个对象非常相似,它们可能属于同一类别。KNN分类器需要三个基本要素:存储的数据集、距离度量标准和最近邻数k。在分类过程中,KNN首先计算未知对象与最近邻的距离,确定k个最近邻,然后利用它们的类别标识确定未知对象的类别。最近邻的定义是:K-最近邻是指与目标对象距离最近的k个数据点。计算距离的方法包括欧几里得、曼哈顿和闵可夫斯基等。K的选择对KNN至关重要,过小的k易受噪声影响,过大的k可能包含远离目标点的数据。通常需
数据挖掘
16
2024-07-17
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versi
Matlab
17
2024-07-28
adaboost 利用弱分类器集成强二元分类器的Adaboost方法——matlab开发
本项目实现了Adaboost方法,利用一系列弱分类器集成强二元分类器。我们选用决策树桩作为弱分类器,展示了在合成数据集和包含数字图像的MNIST数据集上的分类效果。
Matlab
17
2024-08-09
压缩分类器基于随机投影实现MATLAB开发的鲁棒降维分类器
SC - 稀疏分类器,FSC - 快速稀疏分类器,GSC - 群稀疏分类器,FGSC - 快速群稀疏分类器,NSC - 最近子空间分类器,使用SPGL1 - [链接] 进行稀疏化,使用GroupSparseBox - [链接],更多详情请参阅 [链接]。
Matlab
11
2024-07-22
基于神经网络的图像分类器
这段Matlab代码展示了如何使用神经网络进行图像分类。它使用了Matlab的 newff 函数来构建和训练神经网络。代码采用了监督分类技术,需要为每个类别选择合适的训练区域,并使用这些区域的数据来训练神经网络。训练数据存储在CSV文件中,其中包含训练区域的像素值和对应的类别标签。
为了进行分类,需要将待分类的图像转换为CSV文件,其中每行代表一个像素,每列代表一个颜色通道 (红、绿、蓝)。然后,将这个CSV文件输入到训练好的神经网络中进行分类。由于处理的图像可能很大,分类过程可能需要一些时间。
Matlab
13
2024-05-21
基于数据挖掘的分类器数据集分类基础工具
分类器当前版本:0.1 开发版,基于数据挖掘概念的基础分类软件。此应用程序仅适用于完整的分类属性且无缺失值的数据集。目前版本可能含有一些错误,我会不断修复,敬请关注更新!
要求:- Python 3.3+:请从官网下载。- Numpy:请从官网下载。- PyQt4:请从官网下载。
使用方法:项目根目录包含示例文件 data.txt,您可使用它测试应用程序。Classifier v0.1 包括以下4个步骤:
步骤 1:选择一个.txt格式的数据集,它将用于构建决策树。建议检查 data.txt 文件以了解正确的格式。所有记录需按行排列,每条记录用逗号隔开,不包含括号或方括号。
步骤 2:
数据挖掘
19
2024-10-26
MATLAB代码分享线性分类器、贝叶斯分类器和动态聚类优化
宝贝,含泪分享,上述代码主要包括了线性分类器设计,贝叶斯分类器设计,动态聚类。还有最优化的代码,包括拟牛顿法,共轭梯度法,黄金分割等等, share with you!
Matlab
15
2024-08-03
Python构建音乐分类器
Python构建音乐分类器
利用Python强大的机器学习库,我们可以构建精准的音乐分类器。通过提取音频特征,并使用机器学习算法进行训练,可以实现对不同音乐类型进行自动分类。
步骤:
音频特征提取: 使用librosa等库提取音频特征,例如MFCCs、节奏、音色等。
数据集准备: 收集不同类型的音乐样本,并将其标注为相应的类别。
模型选择: 选择合适的机器学习模型,例如支持向量机、决策树或神经网络。
模型训练: 使用准备好的数据集训练选择的机器学习模型。
分类器评估: 使用测试集评估分类器的性能,例如准确率、召回率等指标。
应用场景:
音乐推荐系统
音乐信息检索
音乐版权识别
Hadoop
15
2024-05-12