数据挖掘导论(第二版),中文第4章:K最近邻分类器(K-Nearest Neighbor,KNN)是数据挖掘和机器学习领域广泛应用的一种基本分类算法。其核心思想是:如果一个对象与另一个对象非常相似,它们可能属于同一类别。KNN分类器需要三个基本要素:存储的数据集、距离度量标准和最近邻数k。在分类过程中,KNN首先计算未知对象与最近邻的距离,确定k个最近邻,然后利用它们的类别标识确定未知对象的类别。最近邻的定义是:K-最近邻是指与目标对象距离最近的k个数据点。计算距离的方法包括欧几里得、曼哈顿和闵可夫斯基等。K的选择对KNN至关重要,过小的k易受噪声影响,过大的k可能包含远离目标点的数据。通常需要交叉验证确定合适的k值。数据标准化解决属性尺度不同的问题。高维数据中欧几里得距离可能产生意想不到的结果,可以考虑曼哈顿或闵可夫斯基距离。KNN是一种局部分类器,能产生任意形状的判定边界,但也有缺陷如处理缺失值和不相关属性。提高效率可用k-d树和LSH等技术,同时压缩和降维可改善性能。KNN是常用的分类算法,需根据实际情况选择和改进。
数据挖掘导论KNN分类器详解
相关推荐
基于数据挖掘的分类器数据集分类基础工具
分类器当前版本:0.1 开发版,基于数据挖掘概念的基础分类软件。此应用程序仅适用于完整的分类属性且无缺失值的数据集。目前版本可能含有一些错误,我会不断修复,敬请关注更新!
要求:- Python 3.3+:请从官网下载。- Numpy:请从官网下载。- PyQt4:请从官网下载。
使用方法:项目根目录包含示例文件 data.txt,您可使用它测试应用程序。Classifier v0.1 包括以下4个步骤:
步骤 1:选择一个.txt格式的数据集,它将用于构建决策树。建议检查 data.txt 文件以了解正确的格式。所有记录需按行排列,每条记录用逗号隔开,不包含括号或方括号。
步骤 2:
数据挖掘
19
2024-10-26
基于距离学习的集成KNN分类器研究论文
近年来,数据挖掘在信息产业界引起了极大的关注,主要由于数据量巨大且具有广泛的适用性,急需将这些数据转化为实用的信息。于飞和顾宏研究了基于距离学习的集成KNN分类器,探索其在数据处理中的潜力。
数据挖掘
14
2024-07-17
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versi
Matlab
17
2024-07-28
matlab贝叶斯分类器bayesleastrisk详解
贝叶斯分类算法是一种高效的数据挖掘工具,在matlab环境中以bayesleastrisk命令实现。它基于贝叶斯理论,能够有效地处理分类问题。
Matlab
13
2024-08-19
数据挖掘分类器的二元类和多类比较
基于决策树、随机森林、支持向量机和k-最近邻等方法,探讨了二元类和多类数据挖掘分类技术,评估了分类器在训练-测试数据集上的准确性、F分数和灵敏度,分析了不同数据划分比例对分类器性能的影响。
数据挖掘
26
2024-05-16
数据挖掘导论
数据挖掘定义
数据挖掘必要性
数据挖掘应用领域
数据挖掘任务介绍
机器学习概述
数据挖掘与机器学习关系
数据挖掘实战案例
数据挖掘领域重要会议
数据挖掘
22
2024-04-30
数据挖掘导论
数据挖掘导论
作者: [美]陈封能译者: 范明等出版社: 人民邮电出版社出版年份: 2011
内容概述:本书是一本数据挖掘领域的经典教材,全面介绍了数据挖掘的基本概念、方法和应用。涵盖数据预处理、关联规则挖掘、分类、聚类、异常检测等核心主题,并结合实际案例进行讲解,帮助读者深入理解数据挖掘技术并将其应用于实际问题。
数据挖掘
17
2024-05-19
MATLAB代码分享线性分类器、贝叶斯分类器和动态聚类优化
宝贝,含泪分享,上述代码主要包括了线性分类器设计,贝叶斯分类器设计,动态聚类。还有最优化的代码,包括拟牛顿法,共轭梯度法,黄金分割等等, share with you!
Matlab
15
2024-08-03
Python构建音乐分类器
Python构建音乐分类器
利用Python强大的机器学习库,我们可以构建精准的音乐分类器。通过提取音频特征,并使用机器学习算法进行训练,可以实现对不同音乐类型进行自动分类。
步骤:
音频特征提取: 使用librosa等库提取音频特征,例如MFCCs、节奏、音色等。
数据集准备: 收集不同类型的音乐样本,并将其标注为相应的类别。
模型选择: 选择合适的机器学习模型,例如支持向量机、决策树或神经网络。
模型训练: 使用准备好的数据集训练选择的机器学习模型。
分类器评估: 使用测试集评估分类器的性能,例如准确率、召回率等指标。
应用场景:
音乐推荐系统
音乐信息检索
音乐版权识别
Hadoop
15
2024-05-12