基于决策树、随机森林、支持向量机和k-最近邻等方法,探讨了二元类和多类数据挖掘分类技术,评估了分类器在训练-测试数据集上的准确性、F分数和灵敏度,分析了不同数据划分比例对分类器性能的影响。
数据挖掘分类器的二元类和多类比较
相关推荐
adaboost 利用弱分类器集成强二元分类器的Adaboost方法——matlab开发
本项目实现了Adaboost方法,利用一系列弱分类器集成强二元分类器。我们选用决策树桩作为弱分类器,展示了在合成数据集和包含数字图像的MNIST数据集上的分类效果。
Matlab
17
2024-08-09
数据挖掘导论KNN分类器详解
数据挖掘导论(第二版),中文第4章:K最近邻分类器(K-Nearest Neighbor,KNN)是数据挖掘和机器学习领域广泛应用的一种基本分类算法。其核心思想是:如果一个对象与另一个对象非常相似,它们可能属于同一类别。KNN分类器需要三个基本要素:存储的数据集、距离度量标准和最近邻数k。在分类过程中,KNN首先计算未知对象与最近邻的距离,确定k个最近邻,然后利用它们的类别标识确定未知对象的类别。最近邻的定义是:K-最近邻是指与目标对象距离最近的k个数据点。计算距离的方法包括欧几里得、曼哈顿和闵可夫斯基等。K的选择对KNN至关重要,过小的k易受噪声影响,过大的k可能包含远离目标点的数据。通常需
数据挖掘
16
2024-07-17
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versi
Matlab
17
2024-07-28
基于数据挖掘的分类器数据集分类基础工具
分类器当前版本:0.1 开发版,基于数据挖掘概念的基础分类软件。此应用程序仅适用于完整的分类属性且无缺失值的数据集。目前版本可能含有一些错误,我会不断修复,敬请关注更新!
要求:- Python 3.3+:请从官网下载。- Numpy:请从官网下载。- PyQt4:请从官网下载。
使用方法:项目根目录包含示例文件 data.txt,您可使用它测试应用程序。Classifier v0.1 包括以下4个步骤:
步骤 1:选择一个.txt格式的数据集,它将用于构建决策树。建议检查 data.txt 文件以了解正确的格式。所有记录需按行排列,每条记录用逗号隔开,不包含括号或方括号。
步骤 2:
数据挖掘
19
2024-10-26
优化决策边界的二类分类器开发MATLAB应用
判别函数是模式识别中用于分隔不同类别的重要统计技术之一。这种方法基于已知类别的均值和协方差,适用于参数方法。在此情境下,选择了两个不同的类别,以获取它们之间最优决策边界。这些类别包括双变量和单变量情形。这种分类器被称为二类分类器。分类器的简化形式涵盖三种情况:情况1:特征向量在统计上是独立的,协方差矩阵为对角矩阵,样本分布于球形簇中。情况2:特征向量在统计上相关,但两个类别的协方差矩阵相同,样本分布于相等大小的唇形簇中。情况3:最优决策边界为二次形式。若要使用此GUI,请先解压文件夹,并将MATLAB的当前目录设置为该文件夹。然后,在MATLAB命令行中输入判别式,并按ENTER以打开GUI。
Matlab
11
2024-09-28
Weka数据挖掘:交叉验证与J48分类器性能评估
Weka批量处理模式下使用交叉验证评估J48分类器性能
在Weka的数据挖掘流程中,批量处理模式为用户提供了高效的数据分析途径。以下介绍如何利用Weka的批量处理模式,结合交叉验证方法评估J48分类器的性能。
数据准备:
使用 ArffLoader 加载ARFF格式的数据集。
模型构建:
选择 J48 分类器作为模型。
评估方法:
采用 CrossValidationFoldMaker 将数据集划分为训练集和测试集,进行交叉验证。
使用 ClassAssigner 指定类别属性。
性能评估:
使用 ClassifierPerformanceEvaluator 对J48分类器的性
数据挖掘
12
2024-06-30
MATLAB代码分享线性分类器、贝叶斯分类器和动态聚类优化
宝贝,含泪分享,上述代码主要包括了线性分类器设计,贝叶斯分类器设计,动态聚类。还有最优化的代码,包括拟牛顿法,共轭梯度法,黄金分割等等, share with you!
Matlab
15
2024-08-03
Matlab开发二元阵列天线
利用Matlab进行二元阵列天线的开发。探讨二维阵列天线的三维方向图及其应用。
Matlab
13
2024-07-13
二元自性理论概述
二元自性理论概述。
SQLServer
14
2024-05-30