判别函数是模式识别中用于分隔不同类别的重要统计技术之一。这种方法基于已知类别的均值和协方差,适用于参数方法。在此情境下,选择了两个不同的类别,以获取它们之间最优决策边界。这些类别包括双变量和单变量情形。这种分类器被称为二类分类器。分类器的简化形式涵盖三种情况:情况1:特征向量在统计上是独立的,协方差矩阵为对角矩阵,样本分布于球形簇中。情况2:特征向量在统计上相关,但两个类别的协方差矩阵相同,样本分布于相等大小的唇形簇中。情况3:最优决策边界为二次形式。若要使用此GUI,请先解压文件夹,并将MATLAB的当前目录设置为该文件夹。然后,在MATLAB命令行中输入判别式,并按ENTER以打开GUI。
优化决策边界的二类分类器开发MATLAB应用
相关推荐
MATLAB 决策树分类器
本示例代码展示了如何使用 MATLAB 决策树算法对特定疾病进行诊断,提供可下载的代码供参考。
算法与数据结构
15
2024-05-13
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versi
Matlab
17
2024-07-28
Sherwood决策森林框架的MATLAB分类器
这是一个用于在MATLAB中使用决策森林框架(Sherwood)进行分类的包装器。训练和分类过程同时进行。安装需要MATLAB和C++编译器,并按照Sherwood的许可协议将其下载至指定目录。在Windows上,使用Visual Studio 2013进行编译,或关闭多线程选项以兼容其他编译器。相比其他随机森林实现,Sherwood不包含套袋功能,因此避免了相关错误。
Matlab
7
2024-07-28
adaboost 利用弱分类器集成强二元分类器的Adaboost方法——matlab开发
本项目实现了Adaboost方法,利用一系列弱分类器集成强二元分类器。我们选用决策树桩作为弱分类器,展示了在合成数据集和包含数字图像的MNIST数据集上的分类效果。
Matlab
17
2024-08-09
应用贝叶斯分类器的MATLAB实例
介绍了如何使用贝叶斯分类器进行文章类别判断,使用了斯密斯平滑方法,并提供了MATLAB源码。运行BayesClassifier即可完成分类,考虑到数据量较大,运行时间约为1分钟。
Matlab
14
2024-08-01
MatlabWekaInterface WEKA分类器的Matlab接口开发
MatlabWekaInterface: WEKA分类器的Matlab接口
MatlabWekaInterface是一个用于在Matlab中调用WEKA分类器的接口。该接口允许用户在Matlab环境中利用WEKA提供的各种机器学习算法进行数据分析与模型训练。通过此接口,用户能够方便地实现WEKA的功能,同时也可以在Matlab的强大数据处理能力和可视化功能基础上,提升机器学习任务的效率。
MatlabWekaInterface 支持的功能:
数据集加载与预处理:从Matlab中加载数据并进行预处理。
分类器调用:直接在Matlab中调用WEKA的分类器算法,如决策树、支持向量机等。
结果评估
Matlab
6
2024-11-06
MATLAB代码分享线性分类器、贝叶斯分类器和动态聚类优化
宝贝,含泪分享,上述代码主要包括了线性分类器设计,贝叶斯分类器设计,动态聚类。还有最优化的代码,包括拟牛顿法,共轭梯度法,黄金分割等等, share with you!
Matlab
15
2024-08-03
压缩分类器基于随机投影实现MATLAB开发的鲁棒降维分类器
SC - 稀疏分类器,FSC - 快速稀疏分类器,GSC - 群稀疏分类器,FGSC - 快速群稀疏分类器,NSC - 最近子空间分类器,使用SPGL1 - [链接] 进行稀疏化,使用GroupSparseBox - [链接],更多详情请参阅 [链接]。
Matlab
11
2024-07-22
数据挖掘分类器的二元类和多类比较
基于决策树、随机森林、支持向量机和k-最近邻等方法,探讨了二元类和多类数据挖掘分类技术,评估了分类器在训练-测试数据集上的准确性、F分数和灵敏度,分析了不同数据划分比例对分类器性能的影响。
数据挖掘
26
2024-05-16