数据挖掘是从海量数据中提取有价值信息的过程,利用统计学、人工智能和机器学习方法揭示数据背后的模式、关联和趋势。在IT领域,数据挖掘广泛应用于市场预测、用户行为分析和风险评估等多个方面。本资源包包含丰富的学习资料,帮助学习者深入理解数据挖掘的各个方面。其中包括Mahout 0.8版本的API文档、《Mahout实践指南》等多种资料,适合从初学者到有经验的开发者使用。
优化数据挖掘学习资源
相关推荐
优化下载资源的数据挖掘资料
数据挖掘是从大量数据中提取有用信息和知识的过程,其中关联规则挖掘是重要分支。关联规则挖掘关注在大型事务数据库中寻找变量间的有趣关系,即“关联规则”。这些规则揭示不同商品、事件或现象间的潜在联系,对商业决策、市场分析及个性化推荐至关重要。关联规则挖掘最早源于超市交易数据分析,如顾客购买商品A时通常也购买商品B。这种洞察力可优化商品布局、提升销售效率,协助广告商精准定位目标受众,提高广告效果。数学上,关联规则挖掘定义为:设商品集合I={a1,a2,...,am},交易数据库DB={T1,T2,...,Tn},X→Y(X,Y是I的子集,X、Y不相交)是一条规则,顾客购买X同时购买Y。支持度(Supp
数据挖掘
9
2024-10-14
助力广工学子: 数据挖掘学习资源集锦
为备战数据挖掘考试的广工学子提供助力,精选了历年试卷、新旧版PPT以及核心知识点,内容翔实,助你轻松掌握考试重点。
数据挖掘
9
2024-05-20
数据挖掘学习资料
这份资料涵盖了数据挖掘的核心概念和实用方法,是深入学习数据挖掘技术的优质资源。
数据挖掘
15
2024-05-19
数据挖掘实践资源集合
数据挖掘实践的资源集合,内容还挺全,基本覆盖了从基础到进阶的操作。你如果平时会搞点算法实验、模型啥的,这套挺顺手。
机器学习中的关联规则挖掘算法讲得比较清楚,像 Apriori 和 FP-Growth 都提到了,适合用来理解怎么找出那些“买了 A 也买 B”的场景。
聚类与距离度量那篇也不错,像 K-means 和层次聚类的用法讲得还行,适合那种电商或用户画像的需求。配合可视化工具效果更好。
多层关联冗余过滤讲的是怎么在规则太多时做一些去噪,避免你输出一堆没意义的结果,嗯,这个在生产环境里还挺实用。
挖掘多层关联规则你可以理解为“分类再细一点”,比如商品有品牌、品类、属性,逐层挖掘出规则就更精
Hadoop
0
2025-06-23
数据挖掘Coursera在线学习数据挖掘课程
这是Coursera提供的一门关于数据挖掘的在线课程。
数据挖掘
10
2024-09-25
数据挖掘学习资料
探索数据挖掘领域?这份资源涵盖基础概念和实践应用,PPT阐释核心知识点,习题及答案助您巩固学习成果。
数据挖掘
13
2024-05-23
数据挖掘资源的获取
在寻找数据挖掘资料时,可以探索多种途径。
数据挖掘
15
2024-07-23
数据挖掘课程资源汇总
数据挖掘课程资源汇总
01 数据挖掘绪论[链接1] [链接2]
02 认识数据[链接1] [链接2] [链接3] [链接4]
03 数据预处理[链接1] [链接2] [链接3] [链接4] [链接5] [链接6] [链接7]
04 关联规则挖掘[链接1] [链接2] [链接3] [链接4] [链接5]
05 数据聚类[链接1] [链接2] [链接3] [链接4] [链接5] [链接6] [链接7] [链接8] [链接9]
06 贝叶斯分类[链接1] [链接2] [链接3]
07 信息推荐算法[链接1] [链接2] [链接3]
08 决策树分类[链接1] [链接2] [链接3] [链接4] [链
数据挖掘
16
2024-05-25
数据挖掘PDF资源合集
数据挖掘是从大量数据中提取有价值知识的过程,结合了计算机科学、统计学和机器学习等多个领域的技术。在这个PDF资源合集中,我们可以深入探讨数据预处理的重要性,包括数据清洗、数据集成、数据转换和数据减少。此外,还涵盖监督学习、无监督学习和半监督学习方法,如决策树、聚类和关联规则学习。深度学习模型如神经网络、卷积神经网络和循环神经网络在数据挖掘中的应用也将被详细探讨。开源工具和库如R语言的caret和tidyverse,Python的pandas、numpy、scikit-learn,以及专有软件如SAS、SPSS和Tableau也将被介绍。数据可视化工具如matplotlib、seaborn和gg
数据挖掘
10
2024-07-18