《时间序列的贝叶斯分析》是一部由Lyle D. Broemeling撰写,CRC Press出版的专著。本书详细探讨了贝叶斯统计方法在时间序列分析中的应用,结合理论与实践,帮助读者理解和应用贝叶斯方法处理时间序列数据中的复杂关系和不确定性问题。书中可能涵盖了贝叶斯统计基础、不同类别的时间序列模型如ARIMA和GARCH的贝叶斯构建与估计,以及马尔科夫链蒙特卡洛(MCMC)模拟在贝叶斯分析中的应用。此外,还可能包括参数估计、模型选择方法和实际应用案例,如股票价格预测和气候变化趋势分析。书中还可能介绍了贝叶斯方法如何处理模型参数的后验分布和不确定性,以及常用的贝叶斯分析软件如R语言中的rstan和Python的PyMC3。
时间序列贝叶斯分析的深度探索
相关推荐
时间序列分析预测法
时间序列分析预测法分为三类:
平滑预测法:采用移动平均和指数平滑方法,平滑原始数据趋势线。
趋势外推预测法:利用历史数据拟合趋势函数,预测未来趋势。
平稳时间序列预测法:估计模型参数,根据历史数据预测未来值。
算法与数据结构
21
2024-05-24
R语言时间序列分析
利用全国卷烟销量数据,采用R语言进行时间序列分析。分别构建ARIMA季节时间序列模型、Holtwinters指数平滑模型,并评估模型准确性。提供完整R代码和数据集。
算法与数据结构
16
2024-05-13
时间序列分析资源包
本资源包包含教学PPT和MATLAB实现代码,详细介绍了时间序列的基本理论。时间序列是按时间顺序排列的统计指标数列,主要用于基于历史数据预测未来走势。经济数据通常以时间序列形式呈现,时间单位可以是年、季度、月等。
Matlab
13
2024-09-28
Matlab时间序列分析代码
时间序列数据分析的Matlab实现代码。
Matlab
12
2024-07-27
数学建模中的时间序列分析
探讨时间序列分析的基础知识,参考了《应用时间序列分析》的前三章内容。使用Python进行建模,适合数学建模中对时间序列分析的初学者快速入门与实际应用。文章简单易懂,侧重于实际操作。
统计分析
9
2024-07-17
基于ARMA模型的时间序列分析
使用ARMA模型对海浪高度数据进行时间序列分析及预测拟合,代码中有详细注释,便于学习理解。
算法与数据结构
12
2024-07-13
地学中的时间序列分析技术
时间序列(Time Series)在地学研究中广泛应用,涉及时域和频域两种基本形式。时域分析具有时间定位能力,但频域分析如Fourier变换则更适合处理非平稳序列,如河川径流、地震波、暴雨等。这些现象具有趋势性、周期性和随机性特征,需要多时间尺度的分析方法。
Matlab
17
2024-07-16
UCR_TS_Archive_2015探索时间序列数据分析资源
UCR_TS_Archive_2015是一个广泛使用的时间序列数据集,专为时间序列分类研究而设计。这个压缩包包含了丰富的资源,是研究者进行时间序列分析、机器学习以及模式识别的重要工具。时间序列是按时间顺序排列的数据点,用于研究数据随时间变化的趋势。UCR_TS_Archive_2015由University of California, Riverside(UCR)维护,是迄今为止最大的公开时间序列分类数据集集合,包含生物医学信号、运动捕捉数据等多种类型的时间序列。每个数据集都包括训练集和测试集,数据经过归一化处理,便于比较和分类。应用场景涵盖时间序列分类、模式识别、异常检测以及预测与建模等多
算法与数据结构
12
2024-08-23
Oracle分析函数的深度探索
学习ORACLE进阶中SQL的非常有价值的资源,特别适合中级读者,深入理解Oracle分析函数的运作方式和应用场景。
Oracle
7
2024-07-27