近年来,基于主动数据选择的半监督聚类技术成为数据挖掘和机器学习领域的研究热点。该技术通过利用少量标签数据,显著提高了聚类精度。然而,现有的半监督聚类算法在处理大规模数据时仍面临挑战。
基于主动数据选择的半监督聚类算法研究
相关推荐
半监督聚类技术研究基于主动数据选取的革新算法
半监督聚类技术近年来在数据挖掘和机器学习领域备受关注,尤其是在利用少量标签数据获得高精度聚类方面。然而,现有算法在处理极少标签和多密度不平衡数据集时的表现有限。基于主动学习技术改进了聚类算法,通过最小生成树聚类结合主动学习思想,选取信息丰富的数据点作为标签,并采用类KNN方法传播类标签。实验结果表明,新算法在UCI标准数据集和模拟数据集上展现出更高的聚类精度和稳定性。
数据挖掘
16
2024-07-22
假设检验代码 Matlab - 半监督特征选择
Matlab 代码实现了论文《用于半监督特征选择的简单策略》中提出的方法,该论文发表于《机器学习杂志》。
代码功能:
semiIAMB.m:实现了 Semi-IAMB 算法,应用于 Markov Blanket 发现 IAMB (IAMB.m) 的切换过程,用于半监督场景中的假设检验。
semiMIM.m 和 semiJMI.m:实现了 Semi-MIM 和 Semi-JMI 算法,分别应用于特征选择方法 MIM (MIM.m) 和 JMI (JMI.m) 的切换过程,用于在半监督场景中对特征进行排名。
Tutorial_SemiSupervised_FS.m:教程,介绍如何在半监督学习环境
Matlab
18
2024-05-25
基于半监督学习的遥感图像分类研究优化
探讨了利用半监督学习方法进行遥感图像分类的研究,重点在于优化分类结果的准确性和效率。研究表明,通过引入半监督学习策略,可以显著提升遥感图像分类的性能,适用于各种实际应用场景。
算法与数据结构
13
2024-09-14
基于拓扑聚类的密度聚类算法研究
基于密度的聚类算法不少,像你平时用的 DBSCAN 啦,密度峰值聚类 啦,都挺经典的。但说实话,这篇《基于拓扑聚类的密度聚类算法研究》把它们背后的概念整合得还挺清楚的。拓扑结构的思路其实蛮有意思,把簇看作一种“连通”的结构,挺像用图做聚类时的感觉。对老 DBSCAN 用户来说,能换个视角重新理解密度连通,嗯,挺值的。文章里还提了个新算法,用拓扑改进密度聚类,理论上说效果比传统 DBSCAN 更稳,对一些边界模糊的簇聚得还不错。代码细节没展开说太多,但思路清晰,有兴趣的你可以顺手看看配套的源码资源,像这个 密度峰值聚类算法源码 或 Python GUI 版,都还蛮实用的。如果你之前用密度类聚类感
数据挖掘
0
2025-07-01
基于网格密度的聚类算法研究
主要了基于网格密度的聚类算法,了传统聚类算法在数据时的速度慢和边界模糊问题。其实,随着数据量的不断增加,能快速有效地对数据进行划分变得重要。这种算法通过网格的方式提高了数据效率,适合在数据量大、维度高的场景下使用。你可以用它来优化数据速度,避免传统聚类方法的瓶颈。推荐学习下相关的密度聚类算法,比如DBSCAN、密度峰值聚类等,掌握了这些可以帮你更好地复杂数据集哦!
数据挖掘
0
2025-07-01
选择聚类算法
探索聚类算法以有效提取 Web 数据洞察力。
数据挖掘
18
2024-05-25
基于快速聚类的髙维数据特征选择算法
这篇论文探讨了一种针对高维数据的特征选择算法,该算法利用快速聚类技术提高效率,为数据挖掘领域的学者和实践者提供了有价值的参考。
数据挖掘
14
2024-05-25
半监督学习构建和应用半监督机器学习模型
利用LASSO进行特征选择,并采用半监督方法训练K-最近邻、支持向量机、随机森林和神经网络之一。
Matlab
19
2024-07-31
聚类算法研究
聚类算法的总结类资源其实不少,但《聚类算法研究_孙吉贵.pdf》这篇文章还挺有参考价值的。里面把近年来比较火的聚类方法都梳理了一遍,像K-Means、DBSCAN、谱聚类这些常用的算法,都有详细。关键是,它不仅讲原理,还搭配实验,讲清楚了算法在不同数据集下的表现。对比做得蛮细,准确率、效率都有考虑。
从算法思想讲起,再到关键技术,讲优缺点,说实话,讲得挺透。你要是正好在搞数据挖掘或者图像聚类,拿这篇文章做入门或者查漏补缺都挺合适。尤其是对比那块,看完你基本就知道哪个算法适合自己的场景了。
还有一点蛮好的,作者选的实验数据都来自UCI那类公开库,比较有代表性。你可以用同样的数据复现实验,方便。对
数据挖掘
0
2025-07-05