- 数据挖掘在藏医诊治中的应用
- 综合证候预测模型的构建
- 模型的评价及应用前景
- 数据挖掘技术在藏医中的发展
藏医诊治综合证候预测模型研究
相关推荐
探究灰色预测模型
灰色预测模型,基于少量、不完整的信息构建数学模型,以此预测未来趋势。
在运用运筹学方法解决实际问题、制定发展战略和政策、进行重大决策时,科学预测不可或缺。
预测,是基于客观事物过去和现在的发展规律,借助科学方法对其未来发展趋势和状况进行描述和分析,形成科学假设和判断的过程。
统计分析
15
2024-05-23
预测模型的应用前景
随着技术的不断进步,预测模型在各个领域展现出越来越广阔的应用前景。
统计分析
7
2024-09-14
PM2.5空气质量预测模型研究
基于数据挖掘和机器学习,该研究比较了三种模型(LSTM、自回归和SVM)对德里地区PM2.5空气水平的预测能力。实验结果表明,支持向量回归模型在预测准确率方面优于其他模型,通过输入包括氮氧化物、二氧化硫等其他污染物的信息,模型能够更全面地预测PM2.5浓度。该研究重点关注了德里阿南德·维哈尔地区,这是一个严重受污染的地区。
数据挖掘
18
2024-05-25
灰色预测模型及其Matlab实现
灰色预测模型GM(1,1)及其二次拟合和等维新陈代谢改进算法,包括Matlab程序。
算法与数据结构
16
2024-05-12
临床预测模型Logistic回归分析
想做临床预测模型的朋友可以试试Logistic 回归,它是二分类问题的常用方法。多医疗数据集都会用到,能够帮你预测病人的风险,比如是否患病。这种模型的优点是计算相对简单,结果也易于解释。你也可以搭配一些常见的数据工具来提升预测的准确度,像sklearn库就适合这种回归问题。如果你进一步了解其他相关预测模型,也可以看看一些我分享的链接。,Logistic 回归对于初学者也比较友好,入门较快,适合用来做一些临床数据预测。
统计分析
0
2025-06-25
人口预测模型MATLAB实现
人口预测模型的核心是一个挺经典的莱斯利模型。它就是用一个矩阵,按年龄段来预测未来人口结构变化,生育率、死亡率都能动态调整。代码用的是MATLAB,实现上不复杂,但模型逻辑蛮清晰的,还能迭代改进,适合做政策、城市规划这类项目。如果你刚好需要一个能跑、能调的人口预测方案,这个资源值得一看,尤其适合和你自己的业务数据结合起来做进一步优化。
算法与数据结构
0
2025-06-16
临床预测模型竞争风险建模
临床预测模型里的竞争风险模型,是那种看着有点吓人但其实上手挺快的工具。练习数据也好了,直接可以动手试试。你要做生存、风险建模啥的,这模型就蛮合适。尤其那种存在多个“结局”的情况,比如病人会因为不同原因住院,搞清楚谁的影响大,靠它就挺稳。
数据过程中,经常不是只看一个结果,比如一个病人肿瘤复发也死于其他原因,这时候竞争风险模型就派上用场了。它比传统 Cox 模型更细致,能帮你判断不同风险事件的影响力。用起来不复杂,关键是搞清楚哪个事件算“终点”。
如果你想再深入一点,推荐几个关联内容:像R 语言的可视化优化,这篇讲得比较通俗,还有NRI 评估方法,可以帮你判断模型预测效果是不是真有提升。类似项目
统计分析
0
2025-06-17
EMD-LSTM风速预测模型
基于 EMD 的风速分解,加上 LSTM 的时间序列建模,这套matlab源码组合挺实用的。EMD 负责把风速数据拆成多个分量,每个分量代表不同频率的变化趋势,把这些喂进LSTM模型做预测,效果还不错,适合那种风速变化不规律的数据。
EMD的分解逻辑比较灵活,能适应不同的时间序列特性,所以不光是风速预测,像光伏、电力负载那些数据,也都能试试这套套路。而LSTM这块,源码里有模型结构的搭建和训练流程,超参数配置也比较清晰,调起来不费劲。
你会看到源码里了数据归一化、异常值过滤、模型训练验证这些常规步骤,整个流程跑下来挺顺畅的,尤其适合拿来当学习模板或者二次开发基础。如果你对风速预测、EMD 分解
Matlab
0
2025-06-29
LSTM多步多变量预测模型
多步预测的 LSTM 模型用起来真的还不错,尤其是你手上有一堆带时间标签的数据时,比如气象、股票、交通这些场景,简直太对口了。它能一次性搞定多个特征的多步预测,省心不少。时间序列的LSTM网络,厉害的地方在于它的“记忆力”——专治普通RNN容易忘事的问题。核心就三个门:输入门、遗忘门、输出门,分别决定保留什么、丢掉什么、输出什么,用起来有点像开关逻辑,挺巧妙。在多变量预测这块,它表现得还蛮稳定的。比如你要预测未来一周的温度、湿度、风速这些多维数据,只要喂给它过去一段时间的情况,基本都能给出一组还行的结果。你只要把数据整理成“输入序列”+“输出序列”的结构就行。,数据预也是个大头。什么归一化、缺
算法与数据结构
0
2025-07-05