Python数据分析实战-链家北京二手房价分析分析目标1、查看北京二手居民住房的分布价格情况,Part 1-数据读取和预处理; 2、理解变量、数据选取、重复值缺失值处理,Part 2 -北京市房源分布; 3、数量、单价、总价,Part 3 -各城区房源分布,Part 4 -各城区房价分布; 4、单价分布、总价分布、高价Top15小区、低价Top15小区,Part 5 -各城区房源面积分布; 5、全市平均面积分布、各城区总面积分布,Part 6 -房价与房源特性的关系。
Python数据分析实战-北京二手房屋价格分析.zip
相关推荐
北京二手房数据分析
本分析包含:- 房屋数据概览(各区房屋数量、学区房对比等)- 区维度数据对比(总价、单价、房龄等)- 特定问题分析(房屋面积随时间变化、学区房溢价等)
统计分析
14
2024-05-01
北京二手房市场数据分析与Pyechars练习
随着城市发展和经济增长,北京的二手房市场变得日益活跃。利用Pyechars进行数据分析,可以深入了解市场趋势和投资机会。
统计分析
10
2024-07-18
北京二手房分析数据可视化项目
北京二手房的项目结构蛮清晰的,三个文件打包好:两个.csv数据源加一个.ipynb文件。建议你用 Jupyter Notebook 打开,整个过程写得细,适合刚入门 pandas 的同学,照着练也不会懵。
数据读取、清洗、到可视化,基本一步不少,像是怎么筛选小区、怎么空值都讲了。每段代码都有注释,嗯,看得懂,也改得动。适合那种“学完基础想找点真数据练练手”的朋友。
对了,绘图部分还用到了 matplotlib 和 seaborn,图表还挺漂亮的。如果你对 房产 或者 数据可视化 感兴趣,拿来练练不错。
建议:如果你对 Pyecharts 感兴趣,可以搭配看看这个相关练习,一套组合拳打下来,基本
统计分析
0
2025-06-16
Python助力:链家二手房数据爬取与可视化分析
项目概述
本项目利用 Python 对链家平台的二手房源信息进行爬取,并将获取的数据存储至 MySQL 数据库中。随后,使用 pandas 库对数据进行清洗和分析,最终以可视化大屏的形式直观展示分析结果。
技术栈
Python
MySQL
pandas
数据挖掘
21
2024-05-25
Python金融数据分析实战
金融数据的世界挺有趣,是用Python来挖掘数据,你做各种决策。比如信用卡评分,背后其实是挺复杂的数据。这个资源里,给你讲了多商业数据的实际应用,数据科学家该具备的技能,以及如何用Python做数据的常见操作。而且,资源里不仅了理论,还带你实际操作一个数据挖掘实例,做信用卡评分模型,学到的东西直接能用到工作中哦。
如果你对金融风控、数据挖掘、信用卡评分等领域感兴趣,这篇资源不妨看看,能让你对数据的思路更清晰。再加上里面有不少相关的相关文章,可以让你一步步深入了解,掌握更多实际技能。
嗯,如果你想快速上手并实际问题,这份资料的内容挺适合用来做参考的。你可以通过实际项目中不断练习,提升自己做数据的
数据挖掘
0
2025-06-14
重庆二手房市场数据总览
赶集网、贝壳网和链家网汇总的重庆地区二手房信息总计达到354,887条,详细数据请私信咨询。
DB2
10
2024-07-13
Python数据分析实战AQI分析详解
将详细介绍Python数据分析中AQI分析的基本流程,包括明确需求和目的、数据收集、数据预处理(包括数据整合、数据清洗)、以及描述性统计分析、推断统计分析和相关系数分析等内容。
统计分析
11
2024-07-15
二手车销售数据分析与视觉化系统.rar
该项目涉及Python网络爬虫、前端和后端开发以及Mysql数据库。
数据挖掘
13
2024-07-16
二手车交易价格预测:数字特征分析
基于天池大赛“零基础入门数据挖掘–二手车交易价格预测”的数据集,对二手车交易价格的数字特征进行分析。分析内容包括:1. 相关性分析: 分析各个数字特征与目标变量(二手车交易价格)之间的相关性,识别关键影响因素。2. 偏度和峰度分析: 计算并可视化各个数字特征的偏度和峰度,判断数据分布特征,例如数据是否对称、是否存在异常值等。3. 单变量分布可视化: 使用直方图、密度图等可视化方法展示各个数字特征的分布情况,直观了解数据的集中趋势和离散程度。4. 双变量关系可视化: 使用散点图、热力图等可视化方法展示数字特征两两之间的关系,探索特征之间的潜在关联。5. 多变量回归分析: 建立多个数字特征
数据挖掘
14
2024-05-29