随着互联网技术的飞速发展,当当网面对庞大的用户数量和海量图书选择,如何高效利用数据成为关键挑战。2006年,当当网开始探索个性化推荐和精准营销技术,采取了多步骤处理、限制计算周期、数据剪枝和高效存储查询等策略。随着技术的演进,引入Hadoop等新技术,实现了分布式推荐算法、用户画像构建和实时数据分析,极大提升了推荐系统的效率和用户体验。
【大数据挖掘与管理】傅强-当当网大数据个性化精准营销的探索
相关推荐
大数据挖掘在高校图书馆个性化服务应用
大数据挖掘技术应用于高校图书馆个性化服务,可深挖用户信息、分析行为模式,实现精准推送和资源推荐,提升用户体验。
数据挖掘
16
2024-05-01
智能电网大数据应用探索
随着大数据时代的到来,智能电网发展也迎来了新的机遇和挑战。文章探讨了智能电网大数据平台架构及关键技术,为大数据的应用提供了理论依据和技术支撑,助力智能电网建设升级。
算法与数据结构
12
2024-05-25
大数据时代下的用户画像技术与精准营销
文章介绍了用户画像技术在目标客户识别、消费者行为分析和精准化推送等方面的重要作用,帮助企业利用大数据实现营销策略的个性化和精细化。通过多维度数据的收集和分析,企业能够准确描绘出目标客户的特征和需求,从而优化产品推广和服务优化,提高市场竞争力。
算法与数据结构
7
2024-09-16
大数据与数据挖掘
深入浅出解析大数据与数据挖掘,了解数据分析领域前沿技术。
数据挖掘
26
2024-04-30
探索数据海洋:大数据挖掘之旅
潜入数据之海
大数据时代,蕴藏着无限机遇。数据挖掘,如同深海探宝,从海量数据中提取有价值的信息,为决策提供有力支持。
数据挖掘:点石成金
发现隐藏规律: 通过算法和模型,揭示数据背后的关联和趋势,预测未来发展。
洞察用户需求: 分析用户行为,精准刻画用户画像,实现个性化服务。
优化业务流程: 识别瓶颈和低效环节,提高效率,降低成本。
大数据:挖掘的宝藏
海量数据: 为挖掘提供充足的原材料,捕捉更细微的模式。
多样化数据: 整合来自不同来源的数据,提供更全面的视角。
实时性数据: 及时捕捉变化,快速反应,抢占先机。
数据挖掘:未来无限可能
随着技术的不断发展,数据挖掘将在更多领域发挥作用
数据挖掘
20
2024-05-19
个性化推荐的效果评估—基于用户画像的大数据实践
个性化推荐的效果评估主要关注PV转化率(CTR*CVR),通过提高效果30%,个性化推荐的下载量占比达到21%,而非个性化推荐的占比则超过30%。
算法与数据结构
12
2024-07-22
探索大数据
大数据应用领域
大数据技术正在改变着各行各业,从金融、医疗到零售、交通,大数据分析为企业提供了前所未有的洞察力和决策能力。
大数据日常挑战
尽管大数据潜力巨大,但在实际应用中也面临着诸多挑战,例如数据安全、隐私保护、数据质量以及人才缺失等问题。
大数据应用环境
构建高效的大数据应用环境需要整合多种技术,包括分布式存储、数据处理框架、数据可视化工具以及机器学习算法等。
大数据解析
从海量数据中提取有价值的信息需要先进的解析技术,例如自然语言处理、机器学习和深度学习等,这些技术可以帮助我们理解数据的模式和趋势,并从中获得洞察。
Hadoop
11
2024-05-19
大数据挖掘教程
深度挖掘大数据,解析海量数据集,英文版本。
算法与数据结构
15
2024-05-15
个性化推荐系统架构基于用户画像的大数据实践
个性化推荐系统架构包括离线算法库和在线触点意图聚焦与发散,以及画像融合过滤排序用户行为反馈。推荐效果通过数据存储中心(如Hadoop、Hive、Hbase、MySQL、Redis)和任务调度中心进行建模,模型配置管理和监控特征内容用户特征Jacarrd、cosine、CF、content base、FPGrowth、LDA、LR、DT。场景涵盖PC、无线以及A/B Testing,评估指标包括F1、RMSE、AUC,推送内容质量评分和索引规则模型训练。相似度内容候选和用户行为应用库(类别、标签)通过语义分析和关联计算实现。
算法与数据结构
12
2024-07-14