利用R语言对矿井监测系统数据进行回归分析,建立煤矿己15-x采面瓦斯浓度的回归方程。通过分析方程,确定瓦斯浓度主要影响因素,提出优化瓦斯治理建议,提升矿井安全生产水平。
基于回归分析的矿井监测数据挖掘
相关推荐
基于DSP的矿井瓦斯多点监测系统实现方法
为提高矿井瓦斯浓度检测的精度,提出了一种基于DSP处理器TMS320F2812为核心的多点分布式监测系统。该系统通过瓦斯传感器阵列采集多点数据,运用非线性补偿和最小二乘数据融合算法进行处理,以实现数据的精确检测。井下多个分布式瓦斯监测终端通过TCP网络连接至地面服务器端,将实时数据传送到监控中心进行显示,同时备份至Access2003数据库,方便历史数据的查询与统计分析。实验结果显示,传感器阵列技术结合非线性补偿和最小二乘数据融合算法,显著提升了瓦斯浓度检测的精度,且多点分布式系统便于维护,具备较高的可靠性。
统计分析
10
2024-10-25
基于数据挖掘技术的实时能耗监测方法(2012)
针对常用的能耗监测方法存在的实时性和智能性不足,提出了一种新的实时能耗监测方法,采用数据挖掘技术。通过聚类分析历史能耗数据,识别能耗模式集合,并建立能耗模式判定树。在实时监测过程中,动态采集能耗数据进行模式匹配,并进行离群点分析,有效判断能耗是否异常。本方法在某综合大楼能耗数据实验中验证了其有效性。
数据挖掘
9
2024-07-18
生物医学数据挖掘之回归分析
生物医学数据挖掘之回归分析
上海交通大学医学院计算机应用教研室 龚著琳
回归分析作为一种统计学方法,在生物医学数据挖掘中发挥着至关重要的作用。通过建立自变量(例如基因表达水平、患者特征)和因变量(例如疾病风险、治疗效果)之间的数学关系,回归分析能够帮助我们:
识别预测疾病风险的关键因素: 通过分析大量患者数据,回归模型可以识别出与疾病发生发展密切相关的生物标志物和临床指标,从而为疾病的早期诊断和风险评估提供依据。
预测治疗效果和预后: 回归分析可以帮助我们了解不同治疗方案对患者预后的影响,并根据患者的个体特征预测其对特定治疗的反应,从而实现精准医疗的目标。
揭示生物学机制: 通过分析基因表
数据挖掘
19
2024-05-24
WEKA数据挖掘:分类与回归详解
WEKA数据挖掘:分类与回归详解
在WEKA平台中,分类和回归功能都被整合在“Classify”选项卡下。
核心概念:
Class属性: 作为预测目标的属性,其类型决定了任务是分类还是回归。
若Class属性为分类型,则任务为分类。
若Class属性为数值型,则任务为回归。
训练集: 包含已知输入输出数据的数据集,用于模型训练。
操作流程:
数据预处理: 对原始数据进行清洗、转换等操作,以适应算法需求。
模型建立: 选择合适的分类或回归算法,并使用训练集进行模型训练。
模型评估: 通常采用10折交叉验证等方法评估模型性能。
模型应用: 使用训练好的模型对新的、未知输出的数据集进行
数据挖掘
16
2024-05-27
基于数据挖掘的用户行为分析研究
当前,数据挖掘技术在我国各行业中应用广泛,具有重要的战略意义。然而,针对基于数据挖掘的用户行为分析研究在国内仍较为稀少。针对这一现状,有必要开展有效的研究方法,包括网络用户行为分析、建模与算法分析以及大数据未来趋势预测等方面。本研究深入探讨基于数据挖掘的用户行为分析,具有重要的理论意义。
算法与数据结构
11
2024-07-17
基于OLAP和数据挖掘的Web日志分析
这份PDF文档探讨了OLAP(在线分析处理)和数据挖掘技术在Web日志分析中的应用。
数据挖掘
17
2024-05-15
基于智能数据挖掘的经济预测与分析
经济数据在数据挖掘算法中的应用至关重要,并衍生出许多实际应用。基于当前国际宏观经济指标,构建了数据仓库模型,并阐述其结构和实现特点。利用 SQL Server 2005 数据仓库和数据挖掘解决方案对经济数据进行分析,详细介绍了系统结构和算法实现。最后,探讨了数据挖掘应用的未来发展趋势及其在经济领域的 关键技术。
数据挖掘
11
2024-05-27
基于RoughSet的医疗数据挖掘应用分析(2008年)
利用基于区分矩阵的计算方法简化了从病历样本数据出发的医疗信息处理过程,使其更为高效和便捷。所得的产生式分类规则简明易懂,具有实际应用的参考价值。
数据挖掘
15
2024-07-16
基于日志文件的数据挖掘技术分析与研究
数据挖掘的定义及其在分析日志数据挑战中的应用原因被介绍。讨论了企事业单位计算机信息系统安全的加强对日志数据挖掘的需求,并总结了具体应用。
数据挖掘
9
2024-07-17