CDAT是建立在Python生态系统(如NumPy、Matplotlib)、Jupyter笔记本和iPython、LLNL开发的工具集、以及VTK等开源软件基础上的社区数据分析工具。它为研究人员提供了处理和可视化大规模分布式气候数据的协同方法,支持高性能并行流数据分析和海量气候数据集的科学可视化。CDAT框架通过紧密耦合的CDAT Core与VTK基础设施集成,以及松散耦合的集成方式,使得研究人员能够快速使用各种工具进行数据分析和可视化。
社区数据分析工具CDAT介绍与应用技术
相关推荐
犯罪数据分析工具 强化社区安全
犯罪分析引擎(CMPE 272项目)帮助用户了解特定地区的安全情况。它提供犯罪数据的分析、可视化和信息,让用户能够查看犯罪热点、按类型筛选犯罪,并了解犯罪发生的日期和时间。该引擎覆盖多个城市,包括旧金山、亚特兰大、芝加哥等,通过教育和数据提升社区安全意识。
统计分析
12
2024-09-13
Python数据分析工具集介绍
课程内容包括pandas及其用途、numpy的矩阵运算功能、matplotlib数据可视化工具。通过pandas进行结构化数据分析和数据挖掘,例如学生成绩和股票数据分析。区分python和ipython命令行的数据显示优势,展示Shell命令的便捷补全。
数据挖掘
10
2024-07-13
大数据分析概念、技术与应用
大数据的概念其实挺简单,主要就是如何和利用超大规模的数据集。像社交媒体、视频、机器日志这些,都能巨量的数据,但传统的数据库管理工具就 hold 不住。这本书《大数据的概念、技术与应用》从数据的收集到存储、都有涉及,内容挺全面,技术也不难理解。书里的技术就像 Hadoop、NoSQL 这些,都是现在大数据领域的‘主力军’。而且它还注重实际应用,比如金融、零售、医疗等行业,怎么样用大数据来实际问题。你要是对大数据感兴趣,这本书绝对值得一读哦,学习了之后,不仅能提升自己对数据的理解,也能你在工作中更好地利用数据做决策。
算法与数据结构
0
2025-06-13
通信基站数据分析与Hadoop技术应用
通信基站数据在现代通信行业中扮演着重要角色。利用Hadoop技术可以有效处理和分析这些数据,提升通信网络的效率和性能。
Hadoop
10
2024-07-15
数据科学技术与应用数据分析基础
数据科学的入门课里,数据基础算是个蛮扎实的起点。课程围绕数据的整个流程,像是数据采集、预、统计、可视化这些都有涉及,思路清晰,技术栈也比较贴近实际工作。用的工具也不死板,Python、R、MATLAB这些都能找到对应的实操资源,挺方便的。
讲到数据采集,推荐你看看数据采集汇聚+数据治理+数据+数据可视化平台,思路一条龙,适合搞项目参考。
Python 数据这块也蛮实用的,比如Python 数据与可视化,还有数据与可视化示例,拿来直接改改就能跑。
如果你想练练用PowerBI搞大屏展示,那可以看看这个可视化大数据项目,组件比较全,拖拽也顺手。
而像是更学术一点的,比如用MATLAB搞预或做组学,
统计分析
0
2025-07-01
Pandas数据分析与应用
Pandas 在大数据中可算是必备工具了,挺适合用来海量数据。它的强大在于不仅能快速表格型数据,还能轻松应对混合数据类型。如果你是数据新手,了解一下Series和DataFrame这两个数据结构会对你有。你可以通过代码操作对数据进行增、删、改、查等各种。比如,pd.Series([1, 2, 3])创建的 Series 可以像数组一样进行操作,pd.DataFrame()可以方便地表格数据。此外,Pandas 还具备强大的自动对齐功能,它能在数据操作时自动根据索引对齐数据,方便。总体来说,Pandas 的使用并不复杂,掌握一些基本操作就能让你提高数据效率。如果你正在做数据清洗或者想要探索更复杂
算法与数据结构
0
2025-07-02
数据分析与EViews应用
数据入门的那点事,说简单也简单,说难也确实容易绕。易丹辉的《数据与 EVIEWS 应用》就挺适合新手的,讲得比较清楚,也不啰嗦。尤其你刚接触EViews这类经济类软件的时候,这书能让你少走点弯路。模块清晰,每章都有案例,不是那种纯讲概念的干巴巴风格。比如你用时间序列做预测,书里就教你怎么一步步在 EViews 里跑模型,点哪儿、填什么都讲了。嗯,比较实战。EViews用起来其实不难,就是界面不算现代,操作也有点“学术风”。不过一旦你习惯了,用来跑回归、检验稳定性啥的,还挺快的。书里这些基本操作都有讲,响应也快。想结合其它工具也行,比如你用Python清洗完数据,再导入 EViews 建模。你可
算法与数据结构
0
2025-06-29
hive数据分析工具的应用
hive是基于Hadoop的数据仓库工具,能够将结构化数据文件映射为数据库表,并支持简单的SQL查询功能,可以将SQL转换为MapReduce任务执行。它的优势在于低学习成本,通过类SQL语句即可快速实现简单的MapReduce统计,避免专门开发MapReduce应用,非常适合数据仓库的统计分析。
Hive
14
2024-07-29
Web日志数据分析技术及其应用
Web日志数据分析技术及其应用,喜欢数据挖掘的可以下载查阅。
数据挖掘
15
2024-08-27