这是中国科学技术大学研一课程《数字图像分析》的大作业要求。使用Matlab编写代码实现区域形态分析和K-means聚类,目标是在图像中分割大小不同的两类目标,并基于合适的特征将其分类。建议采用基于标记的分水岭算法进行分割,然后选取特征用于K-means聚类。
Matlab数字图像分析区域形态分析及K-means聚类代码实现
相关推荐
Matlab实现K-means聚类算法
K-means聚类算法是一种常用的无监督学习方法,适用于数据分群和模式识别。在Matlab中实现K-means算法能够有效处理数据集,并生成聚类中心。通过迭代更新聚类中心和重新分配数据点,算法能够优化聚类结果。
Matlab
12
2024-08-22
k-means聚类算法及matlab代码的应用
在机器学习与数据挖掘实验中,我们探索了k-means聚类算法的应用,使用Matlab实现了相关代码。实验涵盖了多源数据集成、清洗和统计,以及数据的数值量化处理。我们通过C/C++/Java程序实现了两个数据源的合并,并解决了数据的一致性问题。实验结果包括了学生家乡在北京的课程平均成绩计算,以及对广州和上海女生体能测试成绩的比较。此外,我们还分析了学习成绩与体能测试成绩之间的相关性。
Matlab
13
2024-08-03
Python实现K-Means聚类算法
介绍了如何使用Python编写K-Means聚类算法的实现代码,适合学习和参考。
算法与数据结构
11
2024-07-13
K-means聚类算法的MATLAB实现
K-means是一种传统的计算K均值的聚类算法,因其计算复杂度低,而成为应用最为普遍的一种聚类方法。该算法通过将数据分为K个簇,使得每个簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。K-means算法的核心思想是迭代地调整每个簇的中心(即质心),直到聚类结果收敛。
Matlab
19
2024-11-05
K-Means 聚类程序
包含 K-Means 算法程序和所需数据集,解压缩后即可直接运行。请调整数据集文件路径以匹配本地位置。
算法与数据结构
13
2024-05-01
MATLAB 中 K-Means 聚类算法的实现
本指南提供了 MATLAB 中 K-Means 聚类算法的详细实现,无需更改参数即可直接使用,同时提供了参数更改选项。
算法与数据结构
11
2024-05-30
k-means聚类算法的应用与特点分析
聚类分析,又称群分析,是研究分类问题的一种统计分析方法,也是数据挖掘的重要算法之一。k-means是其中一种经典的聚类算法,通过度量向量间的相似性来组织数据。它基于样本点之间的距离进行聚类,将数据分为若干个类别,每个类别内部的样本点相似度高于不同类别的样本点。k-means算法在数据挖掘和模式识别中具有广泛的应用。
数据挖掘
14
2024-07-16
数据建模与分析K-Means聚类算法应用
如果你对数据和用户建模有兴趣,或者正在做电信数据的项目,那么这篇文章的内容对你来说会蛮有用的。它通过通信数据,探索了不同用户的消费习惯和行为模式,并且通过K-Means聚类方法,将用户分为几种不同类型,挺实用的。数据的来源是某电信运营商的一些真实数据,所以在实际应用中也接地气。后的结果,可以运营商精准定位用户,个性化的服务。文中还了具体的数据集和提取的特征,像是通话记录、网络求量等,并且用方式把方法讲得清楚。你可以看看里面的案例,也许能给你的项目带来不少启发,是在用户行为这块。,内容既有理论深度,又充满了实战经验,给开发者和师的参考价值还挺高的。如果你想把数据做得更精准、更个性化,不妨试试从这
数据挖掘
0
2025-06-13
K-means算法C++聚类实现
K 均值(K-means)算法是一种挺基础的聚类算法,它通过将数据分成 K 个类别来找出数据的潜在结构。它的过程简单,是通过随机或特定策略选取 K 个初始中心点,通过迭代不断调整每个数据点的归属,直到聚类结果稳定为止。这里分享的这个 C++实现的简单聚类器,能帮你快速用 K-means 算法来对数据进行分类。其实,算法的核心逻辑并不复杂,关键是如何选择合适的初始点和 K 值。至于数据的预,像归一化啥的也是重要的,能让聚类效果更准确。如果你刚接触聚类算法,这个项目挺适合你入门的,操作起来简单,效果也还不错。,如果你想要更复杂的聚类方法,像 DBSCAN 之类的算法也可以尝试。
数据挖掘
0
2025-06-17