Apache Kylin与竞品的比较分析.pdf
相关推荐
Kylin多维分析.pdf详解
Kylin多维分析知识深入探讨####一、Apache Kylin简介及多维分析概念- Apache Kylin:Apache Kylin是一个开源的分布式分析引擎,它基于Hadoop/Spark,提供SQL查询接口和多维分析(OLAP)能力,支持快速查询大规模数据集。该项目由eBay Inc.开发,于2014年捐赠给Apache软件基金会并成为顶级项目。 - 多维分析:多维分析能从多个角度和维度(至少包括两个)分析数据,使分析师能灵活探索数据的多个侧面,深入理解数据背后的故事。 ####二、Kylin核心功能详解#####外部功能: - 可扩展的大数据OLAP引擎:Kylin支持PB级数据规
Hadoop
10
2024-10-10
Apache Kylin工作机制
Apache Kylin工作机制
Kylin是一个开源的分布式分析引擎,专为处理大规模数据集而设计。其核心原理在于预计算,通过预先计算所有可能的查询结果并将其存储为Cube,从而实现极快的查询速度。
Kylin工作流程如下:
数据建模: 用户根据业务需求定义数据模型,包括维度、指标和数据源。
Cube构建: Kylin根据数据模型构建Cube,预计算所有可能的查询结果。
查询: 用户提交查询请求,Kylin直接从Cube中获取结果,无需访问原始数据。
Cube的构建过程:
维度组合: Kylin根据维度定义生成所有可能的维度组合。
指标计算: Kylin针对每个维度组合计算相应的指标值。
Hadoop
21
2024-05-20
Apache Kylin权威指南
Apache Kylin 的权威指南,挺适合做大数据的你。书是 Kylin 核心团队写的,内容靠谱,讲得也比较系统——从架构原理到调优运维,再到二次开发,覆盖得蛮全的。
Hadoop 平台上的 OLAP 引擎,性能还不错。面对万亿级别的数据,也能做到秒级响应,这点真的挺香。你要是搞 BI 报表、用户行为这类需求,用 Kylin 能省不少功夫。
调优技巧和实战经验写得落地,比如怎么建 Cube、怎么配合Hive和HBase提升查询效率,书里都有实用案例。而且语气不是死板的教程风,读起来也不累。
另外,还搭配了几篇相关资料,像Kylin 加速 Hive 查询、Python 和 Kylin 结合这些
Hive
0
2025-06-13
Apache Kylin在外卖流量分析中的创新应用与实践
深入探讨了流量分析中的数据处理难点及其技术挑战,详细介绍了技术选型过程和为何选择Apache Kylin作为解决方案的原因。进一步阐述了如何利用Kylin进行数据建模,解决流量分析中的复杂数据问题,并探讨了Kylin在百度外卖其他大数据场景中的应用。
spark
16
2024-08-04
Python与Apache Kylin简化大数据分析的利器
现如今,大数据、数据科学和机器学习不仅是技术圈的热门话题,也是当今社会的重要组成。数据就在每个人身边,并且每天正以惊人的速度增长。据福布斯报道:到2025年,每年将产生大约175个Zettabytes的数据量。如今,各行各业越来越依赖于对大数据的高级处理和分析,如金融、医疗保健、农业、能源、媒体和教育等重要社会发展领域。然而,这些庞大的数据集给数据分析、数据挖掘、机器学习和数据科学带来了巨大的挑战。数据科学家和分析师在面对海量数据时会遇到数据处理流程复杂、报表查询缓慢等问题。通过Python与Apache Kylin的结合,可以有效简化数据分析流程,极大提升分析效率。Apache Kylin支
数据挖掘
10
2024-10-26
Apache Kylin 4.0.2 安装程序
提供 Apache Kylin 4.0.2 安装程序。
Hadoop
9
2024-04-30
基于Apache Kylin的数据分析平台应用开发
Apache Kylin是一个开源的分布式分析引擎,提供基于Hadoop的SQL查询接口和多维分析(OLAP)功能,支持处理超大规模数据。最初由eBay公司开发并贡献给开源社区。它能够在亚秒内查询庞大的Hive表。本资料涵盖了移动、百度、美团和京东等企业在Kylin平台上的实际建设案例。
算法与数据结构
11
2024-07-22
Apache Kylin 快速上手教程
Apache Kylin 快速上手教程本教程指导您快速入门使用 Apache Kylin,建立多维数据集并进行 OLAP 查询。内容涵盖:- Kylin 介绍- 环境搭建- 创建多维数据集- 查询多维数据集- 性能优化技巧
Hadoop
19
2024-04-29
Apache Kylin基于MapReduce/Spark的Cube计算原理与流程
MapReduce 和 Spark 的 Cube 计算,其实没你想的那么神秘,背后就是分批+多层聚合的套路。Apache Kylin在这方面做得还挺顺,搭配 HBase、Hive 啥的,搞个 OLAP 挺香的。Cube 构建基本上就是一套 ETL 流程,先提维度、再编码聚合,一股脑塞进 HFile。等你习惯了流程,写起BatchCubingJobBuilder2.java也不难,逻辑还蛮清晰。
spark
0
2025-06-13