机器学习作为人工智能领域的重要分支,在当前大数据时代背景下尤为重要。介绍了《机器学习实战》中关于线性规划的Matlab代码实现,从数据中提取有价值信息和模式。该文章源自子实的学习笔记,使用Jupyter Notebook编写,推荐在中查看。内容基于斯坦福网络课程《机器学习》,对每讲进行了详细记录,着重展示了实际应用与计算内容。
线性规划的Matlab实现指南-机器学习学习笔记
相关推荐
机器学习的部分学习笔记改写
机器学习的一些学习记录
算法与数据结构
18
2024-07-15
吴恩达机器学习与深度学习:学习笔记与代码实现
本仓库包含吴恩达机器学习与深度学习课程的学习笔记和代码实现。课程笔记涵盖机器学习和深度学习的核心概念,代码部分则使用MATLAB实现了课程中涉及的基础算法。
关于课程编程作业:
强烈建议注册 Coursera 上对应的课程以完成编程作业。课程作业能够帮助你更好地理解和应用所学知识。
关于代码实现:
本仓库中的代码主要使用 MATLAB 编写,帮助学习者理解算法的底层实现。
Matlab
14
2024-05-30
Python实现线性规划模型
以下是使用Python实现线性规划模型的代码示例。线性规划是一种优化问题的数学方法,通过定义目标函数和约束条件来求解最优解。Python提供了多种库和工具来进行线性规划模型的实现和求解。
算法与数据结构
11
2024-09-18
斯坦福机器学习笔记
斯坦福的机器学习笔记视频提供了深入的学习资源,涵盖了机器学习领域的关键概念和实际应用。学员可以通过这些视频课程深入了解机器学习算法和技术的最新发展。
算法与数据结构
8
2024-08-09
线性规划的MATLAB优化方法
无约束规划
非线性规划
Matlab
12
2024-05-25
大数据与机器学习学习笔记.xmind
学习笔记概述
算法与数据结构
16
2024-07-15
Matlab常见机器学习算法实现
利用Matlab强大的科学计算能力与工具箱, 深入探讨了几种常用机器学习算法的实现, 包括BP神经网络、支持向量机、LVQ神经网络、粒子群优化算法以及离散Hopfield神经网络等。 通过具体的代码示例和算法流程解析,帮助读者快速掌握这些算法的基本原理和Matlab实现方法,为进一步的机器学习研究和应用奠定基础。
算法与数据结构
8
2024-06-30
使用Github的首次线性规划MATLAB代码实现
这是首次使用Github来分享线性规划的MATLAB代码。以下两个程序均出自《运筹学基础及其MATLAB英语》一书,作者是李工农。MATLAB程序Ssimplex.m通过单纯形法解决简单的标准线性规划问题。例如,利用MATLAB程序Ssimplex.m来解决如下线性规划问题:求解极大值情况下的标准线性规划问题,需将其转换为以下标准形式。只需在MATLAB提示符下输入相应的矩阵A、价值系数向量c和资源向量b(均按列向量输入),即可调用该程序进行计算。计算结果显示,经过两次迭代得到的最优解为x1=25, x2。
Matlab
16
2024-08-30
手写SVM算法Matlab实现 - 机器学习项目指南
我在我的机器学习和深度学习项目中分享了手写SVM算法的Matlab代码。项目指南包括克隆/下载存储库并提取ZIP文件,然后在第一级目录中执行命令“ python main.py”。执行后,将生成用于PDF报告的所有结果和图像。此外,项目还涉及克隆/下载存储库并运行“ alphaBuildFeatures.m”文件,生成两个单独的“ .mat”文件中的结果。分类代码和结果存储在“分类结果”文件夹中。通过克隆/下载存储库并在MATLAB中右键单击“ INK.fig”,然后单击“在GUIDE中打开”,您可以运行GUI,将手写曲线分割或分类数字。最后,您还可以通过运行“ Rubine.m”,“ Vit
Matlab
9
2024-09-28