Matlab Hill代码RBCNet采用双重深度学习架构,改善生物医学应用程序中的细胞检测任务,提升手动分割和注释的准确性和可重复性。该算法包括U-Net和Faster R-CNN两阶段,分别用于单元群集分割和小型单元对象检测。RBCNet通过单元聚类技术实现区域检测,提高了在稀薄涂片显微镜图像中的精确度和扩展性。
Matlab Hill代码RBCNet双重深度学习架构用于细胞检测
相关推荐
Matlab代码博客细胞检测的高效算法
尽管物体检测已在多个行业产生影响,但在使用巴氏涂片显微镜检测癌细胞方面仍存在挑战。本项目引入了一种机器学习算法,能够在检测和裁剪感兴趣区域(ROI)之前自动检测异常细胞特征。使用宫颈细胞的数字图像,我们通过以下三个关键步骤实现ROI的自动识别:(I)应用于RGB显微照片的非线性过滤器;(II)基于图的聚类(Felsenszwalb算法);(III)Isodata二进制分类定义超像素。该过程的平均精度达到92%,平均召回率为95%。这一算法是未来智能显微镜电动载物台的核心驱动力,能够扫描完整的载玻片。详见Efficient_Graph_Poster_19.pdf。
Matlab
8
2024-07-22
MATLAB AMI代码基于深度双随机图正则化矩阵分解的单细胞RNA测序细胞类型检测
这篇论文提供了一种基于深度双随机图正则化矩阵分解的方法,用于单细胞RNA测序中的细胞类型检测。编码使用MATLAB实现,主要包括 run_DSINMF.m、factorization_AB.m、factorization_BF.m、constructW.m、NormalizeUV.m、bestMap.m、compute_NMI.m、AMI.m 和 ARI.m 等文件。用户需下载DSINMF文件夹,并参照README.doc进行操作。
Matlab
15
2024-08-08
深度学习中的对象检测综述及Matlab代码分析
深入调研与审查深度学习中的对象检测,包括最新的技术进展和方法。探讨了R-CNN、SPP-Net、OverFeat等模型在视觉识别和对象检测领域的应用,特别关注了Matlab代码实现。此外,还介绍了在人脸检测和语义分割中应用的卷积神经网络。
Matlab
16
2024-08-24
深度学习应用于医学图像处理的Matlab代码简介
介绍了使用Matlab进行医学图像处理的深度学习应用。作者首次探索了图像配准技术,使用了Matlab的Image Processing Toolbox(IPT),并上传了关于knee1.dcm和knee2.dcm的配准实验代码。实验中作者对各种参数变换进行了详细实验,发现部分模式不适合相互搭配使用,或需要特定的处理顺序。深入探讨每次处理后的配准效果。
Matlab
9
2024-09-27
深度学习目标检测方法解析
这份文件深入探讨了利用深度学习进行目标检测的各种方法。它对不同的方法进行了分类和解析,并对它们的优缺点进行了比较。
统计分析
13
2024-05-12
MATLAB Hill代码-数学建模课程项目
这些项目代表了我在2017-2018春季的数学建模和数学实验课程中完成的一些MATLAB代码。包括希尔密码的编码和解码器,自行设计的图像分割算法,用于垂直分割的图像块和3 * 3网格图像块,图像软化程序(使用插值法提高分辨率),小电影以及涉及傅立叶级数拟合、泰勒展开和牛顿法的简单数学概念,以及蛇游戏和狼人游戏(lang-ren-sha)的模拟程序,使用蒙特卡洛模拟法确定每个角色的最佳人数。
Matlab
12
2024-07-24
用于细胞表面染色的自动化MATLAB工具CellSegm期权MATLAB代码
随着技术的不断进步,需要一种自动化的方法来处理细胞表面染色图像。CellSegm是一款专为此设计的MATLAB工具,提供精确的细胞分割功能。
Matlab
11
2024-09-29
Matlab细胞轨迹跟踪代码
此存储库包含用于Matlab的灰度处理和细胞跟踪的源代码。该程序支持荧光或暗场电影的处理,以及相衬电影的跟踪。兼容Matlab 2018a及更早版本,支持'.tif'堆栈和'.nd2'文件格式。还提供适用于Linux的版本。
Matlab
14
2024-08-12
订单分批MATLAB代码改进的深度学习体系结构用于人员重新识别
此存储库实现了一种改进的深度学习架构,用于人员重新识别。主要使用的深度学习库是dlib v19.0 +,要求C++11兼容的编译器、CUDA 7.5或更高版本、cuDNN v5或更高版本、CMake v2.8.12 +、HDF5 v1.8.16 +。代码仅在Ubuntu 16.04上进行了构建和测试。安装和构建此代码需要使用CMake进行管理。
Matlab
10
2024-09-27