这个存储库包含Matlab和Python中使用神经网络进行OLS学习的代码,适用于蛛网模型。Matlab代码分别是'cobweb_ANN.m'(使用线性激活函数)和'cobweb_ANN_2.m'(使用Sigmoid激活函数),Python代码分别是'cobweb_ANN_P.py'(线性激活函数)和'cobweb_ANN_P_2.py'(Sigmoid激活函数)。所有代码都使用 'Shocks_var.txt' 和 'w_lag.txt' 两个数据文件,确保结果的可比性。
Matlab和Python神经网络OLS学习在蛛网模型中的实现
相关推荐
GRNN神经网络的特点及其在Matlab中的实现
与BP神经网络相比,GRNN具有以下优点:(1) 网络的训练是单程进行,无需迭代。(2) 隐含层神经元个数由训练样本自动适应确定。
Matlab
11
2024-07-27
BP神经网络学习算法的MATLAB实现
BP神经网络重要函数
在MATLAB中构建和训练BP神经网络,可以使用以下重要函数:
| 函数名 | 功能 ||---|---|| newff() | 生成一个前馈BP网络 || tansig() | 双曲正切S型(Tan-Sigmoid)传输函数 || logsig() | 对数S型(Log-Sigmoid)传输函数 || traingd() | 梯度下降BP训练函数 |
算法与数据结构
15
2024-05-21
神经网络在MATLAB中的应用实例
MATLAB神经网络的原理和实例详解及其配套源码。
Matlab
9
2024-08-10
MATLAB的神经网络实现
MATLAB提供了强大的工具和函数,用于实现反向传播神经网络(BP神经网络)。这些工具和函数使得在MATLAB环境中轻松地搭建和训练BP神经网络成为可能。使用MATLAB,可以有效地进行神经网络的参数调整和性能优化,以适应不同的数据集和应用场景。
Matlab
11
2024-07-23
BP神经网络MATLAB实现
经典的 BP 神经网络算法的 Matlab 实现,思路清晰、注释也还算详细,适合刚上手或者回炉的同学看看。代码直接放在.txt文件里,用起来挺方便的,不用额外解压各种奇怪格式。
用的是标准的反向传播算法,流程基本上是初始化→前向传播→误差计算→反向传播→更新权重。这些步骤代码里都写得比较直白,适合你快速理解整个过程。
比如你要做个手写数字识别的 Demo,或者搞个分类任务,用这个 BP 代码就挺合适的。跑完一遍,对神经网络训练机制大致心里就有谱了。
另外我看了下,还有一些相关的扩展资源,比如MATLAB 代码示例、优化过的版本,你可以按需下载。建议你对比几份代码看看,思路会更清晰。
哦对,如果
Matlab
0
2025-06-13
基因算法在神经网络中的应用
为大学生建模提供必要的代码
算法与数据结构
11
2024-07-18
使用BP神经网络在Matlab中实现数字0~9识别
这是一个Matlab源码,使用BP神经网络来开发一个能识别0~9数字的系统。系统界面友好,包含训练样本和含噪声的数字图片。随着技术进步,BP神经网络在数字识别领域展现出巨大潜力。
Matlab
9
2024-09-29
MATLAB神经网络工具箱中Hopfield网络的反馈网络模型
Hopfield网络(反馈网络)的仿真:simuhop设计solvehop设计Hopfield网络solvelin设计线性网络rands产生对称随机数learnbp反向传播学习规则learnh Hebb学习规则learnp感知层学习规则learnwh Widrow-Hoff学习规则initlin线性层初始化initp感知层初始化initsm自组织映射初始化plotsm绘制自组织映射图trainbp利用反向传播训练前向网络trainp利用感知规则训练感知层trainwh利用Widrow-Hoff规则训练线性层trainsm利用Kohonen规则训练自组织映射
Matlab
15
2024-07-20
基于McCulloch-Pitts模型的神经网络MATLAB代码实现
探索神经网络基础 —— McCulloch-Pitts模型的MATLAB代码实现,深入了解'与'、'或'、'非'等逻辑运算在神经元层面的运作机制。
Matlab
12
2024-04-29