在这本书中,我们深入探讨了数据挖掘的基础原理,并详细介绍了如何利用SPSS-Clementine软件进行应用。通过本书,读者可以系统地学习数据挖掘技术,掌握SPSS-Clementine的实际操作技能。
数据挖掘原理与SPSS-Clementine应用宝典
相关推荐
数据挖掘原理与SPSS-Clementine应用宝典
用户可以从数据流的任何非终端节点中生成用户输入节点。具体步骤包括:(1)确定在流程的哪一点输入节点;(2)右键单击节点并选择“生成用户输入节点(P)”,将节点数据导入用户输入节点;(3)用户输入节点负载了流程下游的所有过程,代替原有节点。生成后,节点从原数据中继承了所有数据结构和字段类型信息(如果可以继承)。
数据挖掘
14
2024-07-18
数据挖掘原理与SPSS-Clementine应用宝典详解
C5.0节点成本页签C5.0节点对话框用于显示错误归类损失矩阵,指定不同类型预测错误之间的相对重要性。图21-20展示了错误归类损失的成本对比。损失矩阵显示每一可能预测类和实际类组合的损失情况,允许用户自定义损失值以及改变预测类与实际类组合的损失值。
数据挖掘
19
2024-09-01
图数据挖掘原理与SPSS-Clementine应用宝典
图20-2以颜色为层次的图和图20-3以大小为层次的图详细介绍了数据挖掘的原理和SPSS-Clementine应用方法。
数据挖掘
15
2024-07-17
数据挖掘原理与SPSS-Clementine应用宝典详解
17.5计算标准t17.5.1交叉验证标准t交叉验证的概念是将样本分成两个子集:一个包含n-m个样本的训练样本集,另一个包含m个样本的验证样本集。第一个样本集用于建模,第二个样本集用于评估预期偏差或估算距离。例如,在具有定量输入的神经网络中,通常使用高斯偏差:(17-30)
数据挖掘
13
2024-07-17
数据挖掘原理与SPSS-Clementine应用指南
5.2.2.1.相关概念t假定给定的样本数据为Y、X,其中因变量样本数据矩阵Y=(y1,y2,…,yn)是p×n样本矩阵,即p个因变量,n个样本;自变量样本数据矩阵X是q×n矩阵,即q个自变量,n个样本。在实际计算时,X一般是将原始数据中心化后得到的样本矩阵,即:X×1n=0。
数据挖掘
10
2024-07-15
数据预处理分类-数据挖掘原理与SPSS-Clementine应用宝典
数据预处理分类:从对不同的源数据进行预处理的功能来分,数据预处理主要包括数据清理、数据集成、数据变换、数据归约等4个基本功能。在实际的数据预处理过程中,这4种功能不一定都用到,而且,它们的使用也没有先后顺序,某一种预处理可能先后要多次进行。
数据挖掘
19
2024-08-08
数据挖掘原理与SPSS-Clementine应用指南
图19-23展示了如何设置和读取追加节点数据。追加节点通过从同一数据源读取所有记录,并保持数据结构的一致性,直至数据源无更多记录。
数据挖掘
12
2024-10-12
产生关联规则数据挖掘原理与SPSS-Clementine应用宝典
你会对数据挖掘中的关联规则产生兴趣,尤其是在使用 SPSS-Clementine 进行时。通过计算支持度和置信度来提取关联规则,可以你发现数据中的潜在模式。比如,假设你在做零售数据,发现购买面包的顾客通常也会买牛奶。那么,这就是一个典型的关联规则。你可以通过公式计算规则的置信度,来判断这个模式是否可靠。在 SPSS-Clementine 中,运用这些规则进行,操作相对简单,效果也蛮显著的。如果你刚接触这块,建议先掌握基本概念,再深入了解不同类型的关联规则挖掘算法。你可以查看相关的资料和教程,掌握更多技巧,提升的准确性。
数据挖掘
0
2025-06-17
数据挖掘原理与SPSS-Clementine应用指南
图21-91展示了线性回归节点汇总页签的详细内容,涵盖了数据挖掘原理与SPSS-Clementine应用的重要节点。
数据挖掘
17
2024-07-16