Matlab Data Fitting for Medication Dosing Plan
故可制定给药方案:即:首次注射375mg,其余每次注射225mg,注射的间隔时间为4小时。
Matlab
8
2024-11-06
Python Data Science Handbook高清版Jake VanderPlas
这本《Python Data Science Handbook》简直是数据科学的宝典。如果你对 Python 有一些了解,想要进一步探索数据、机器学习和数据可视化,绝对不能错过它。书中的内容覆盖了从基础到进阶的方方面面,包括Numpy、Pandas、Matplotlib、Scipy等核心库。是对于数据科学项目流程的详细,真的蛮实用的,能你从零开始做一个完整的项目。而且,这本书不仅仅是理论,多实际操作也讲得到位,适合用作手头的参考资料。如果你已经掌握了一些 Python 基础,想学习如何高效地数据、做可视化、甚至进行机器学习建模,这本书会是一个好的选择哦。
算法与数据结构
0
2025-06-17
MATLAB Excel Import Code for Data Science Basics
MATLAB导入Excel代码数据科学语: Julia [这就是我们正在使用的]库/软件包: matplotlib-用于数据分析 Matlab-用于数学计算快速说明: julia code = .jl文件扩展名操作:赞美~和&或|双向运算,例如>, <, >>>数学运算:输入数据输入一个字符串: var = readline()读取数字: num = parse(Int64, readline())环形尽管while (true) print("Go to hell") end有条件的如果别的if (num % 2 == 0) println("even") else println("
Matlab
22
2024-11-02
Data Science For Dummies数据科学入门指南
入门数据科学不想太烧脑?《Data Science For Dummies》还挺合适。全书偏实战,讲得清楚不绕,像老朋友带你一步步捋顺什么是数据清洗、什么是可视化、怎么理解机器学习。没有太多数学公式,比较适合前端转型或者想做数据相关项目的开发者看一看。哦,它还会提到 MapReduce、Hadoop、Spark 这些大数据工具,虽然只是入门级,但了解下架构思路还是蛮有用的。
SQLServer
0
2025-06-17
Data Mining Learning Resources and Final Exam Review Key Points
数据挖掘是一种从海量数据中提取有价值知识的过程,结合了统计学、机器学习和数据库技术。在南京工程学院数据科学与计算机专业的课程中,数据挖掘是一门重要的专业课程,培养学生的数据分析能力,帮助他们理解并应用相关算法解决实际问题。
在数据挖掘的学习过程中,我们首先需要了解数据预处理的基本步骤,包括数据清洗(如处理缺失值、异常值和重复值)、数据集成(将来自不同来源的数据合并)和数据转换(如规范化、离散化)。这些预处理步骤对于确保后续分析的有效性和准确性至关重要。
接着,我们要深入学习各种数据挖掘方法,其中分类、聚类和关联规则是最基础的三类。分类是通过训练模型预测目标变量的类别,常见的算法有决策树、随机森
数据挖掘
8
2024-10-26
MySQL Continuous Data Protection: Best Practices and Case Study
This document outlines best practices for implementing continuous data protection for MySQL databases, illustrated by a case study of the .IE registry's restore process.
Best Practices:
Regular Backups: Implement a robust backup strategy encompassing full, incremental, and potentially log-based ba
MySQL
17
2024-05-30
Mastering Data Science A Practical Guide from Industry Experts
Data Science has become a pivotal skill set, capable of shaping everything from election outcomes to revolutionary business models. This field’s allure stems from its power to answer complex, meaningful questions through data. But how can one learn such a vast and interdisciplinary subject effective
算法与数据结构
16
2024-10-26
Fintech-Impact-on-Insurance-Actuarial-Science-Big-Data-Blockchain.pdf
在金融科技快速发展的背景下,金融科技对我国保险行业的影响日益显著,尤其是在大数据和区块链技术的推动下,保险精算工作面临着前所未有的变革。通过分析大数据与区块链在保险精算中的应用,探讨其对精算模型、风险评估、定价策略以及赔付预测的深远影响。
一方面,大数据技术通过处理大量实时数据,帮助保险公司更加精准地评估客户风险,改进定价模型,并能够对客户行为进行实时分析,提高精算的准确性和效率。另一方面,区块链技术则为保险精算提供了更加透明、安全的交易记录,降低了信息不对称,提高了数据共享的可信度,从而增强了精算过程中的风险控制能力。
综上所述,金融科技尤其是大数据和区块链的融合为我国保险精算带来了巨大的变
Hadoop
6
2024-11-06
Statistical Analysis of Network Data with R
网络的必备工具,R 语言在这块真的挺拿手。sand这个包就挺有意思,支持直接在文本里运行代码,体验类似 R Markdown,写报告或教学演示都方便。
网络数据嘛,基本就是由节点和边组成的图结构。比如社交网络、蛋白质交互、网页链接这些,在 R 里可以用igraph来,导入数据用graph_from_data_frame或者read.graph都还蛮顺手的。
可视化这块也灵活,ggplot2和igraph都能出图,像layout_with_fr那类布局函数能让网络结构看起来更清晰。节点颜色、大小都能根据变量自定义,美观又实用。
接下来是环节。像节点的度、中心性、聚类系数这类指标,igraph里都
统计分析
0
2025-06-13