Python进行数据挖掘 该资源为作者在CSDN平台上撰写的支持Python数据挖掘和数据分析的文章。主要内容包括Python在数据挖掘、机器学习、文本挖掘等领域的算法实现代码,帮助读者深入理解这些技术的实现方式。为了适应Python 3.x版本,本资源对原始代码进行了相应修改,与Python 2.x版本略有不同,读者在使用时请注意其差异。这一资源主要聚焦于基础知识,适合初学者,如果文章中有错误或不足之处,欢迎大家提出宝贵意见。感谢您的支持与鼓励,希望能一起进步。更多内容请参见CSDN博客效果图,若您觉得该资源有帮助,请帮忙点个Star,您的支持是作者继续分享的动力。共勉,数据挖掘知识分享。
Python-for-Data-Mining支持Python数据挖掘和分析的实用资源
相关推荐
Massive Data Mining数据挖掘教程
斯坦福教授写的大数据挖掘书,内容不光硬核,讲法也接地气。讲到MapReduce和HDFS时,举了不少实战例子,分布式入门蛮合适的。还有像MinHash、LSH这种搞相似性搜索的算法,解释得也比较易懂,适合你这种边学边用的节奏。
大数据里的实时流,书里专门拿出一章来讲,像什么滑动窗口算法啊、在线算法啊都有提到。做社交数据或者风控的你,肯定会用得上。还有经典的PageRank、链接垃圾检测这些,嗯,搜索相关的项目也挺依赖这些。
像频繁项集挖掘,除了说A-Priori,还给了优化版本的思路,跑大数据集不会卡顿。聚类部分也不含糊,书里提到不少适合高维数据的方案,适合搞推荐系统的同学看看。
还有广告投放
数据挖掘
0
2025-06-13
Python数据挖掘分析微专业
资源目录:1.数据分析技术2.数据表达逻辑3.实战数据分析项目4.企业级数据分析5.数据爬虫策略6.数据爬虫实际项目7.企业级数据爬虫8.机器学习算法9.Kaggle挑战10.企业级数据挖掘实战###Python数据挖掘分析微专业概述####一、数据分析技术数据分析是数据科学中不可或缺的部分,包括数据的收集、整理、转换和解读等环节。本章节详细介绍以下几个方面:1. 数据预处理:涵盖数据清理(如去除缺失值和异常值)、数据转换(例如数据标准化和归一化)。2. 探索性数据分析(EDA):利用图表和统计测试揭示数据的基本特征和潜在模式。3. 统计学基础:涵盖概率论、假设检验和置信区间等基础理论,为高级
数据挖掘
12
2024-08-29
Data Mining Practical Machine Learning Tools and Techniques数据挖掘实用教程
数据挖掘领域的老司机大多都听说过这本《Data Mining:Practical Machine Learning Tools and Techniques》,名字挺长,但内容真不啰嗦。理论讲得比较系统,实践案例也蛮多,适合那种想边学边上手的你。
决策树、朴素贝叶斯、KNN、SVM……这些常见的机器学习算法在书里都有,不是那种光讲公式的书,配了不少实际案例,代码逻辑也清楚。像WEKA这种工具,书里也讲得挺细,安装、使用都带着手把手讲的那种。
前期的数据预也讲得比较实在,什么数据清洗、归约、变换都有提到,哪一步该注意什么,读起来一目了然。嗯,适合做企业项目或者学生科研时参考用。
书后面的部分讲到
数据挖掘
0
2025-06-16
使用Python进行数据挖掘分析
Python数据挖掘分析是利用Python编程语言进行大数据分析的关键实践。Python以其简洁的语法和丰富的库成为数据科学家和分析师的首选工具。本数据集包含多个章节的学习资源,包括源代码、实例和相关数据集,涵盖数据处理、探索性数据分析(EDA)、机器学习等多个关键领域。在Python中,我们通常使用Pandas、NumPy和Matplotlib等库进行数据分析。Pandas提供高效的DataFrame数据结构,便于数据清洗和分析;NumPy提供强大的数值计算功能;Matplotlib用于数据可视化,帮助用户理解数据分布和趋势。具体章节包括:1. chapter15.zip:高级数据分析和预测
数据挖掘
16
2024-08-12
Python数据挖掘与分析技术分享
Python数据挖掘与数据分析技术在CSDN博客的详细介绍,涵盖了Python 3.x版本的算法实现,包括数据挖掘、机器学习和文本挖掘。文章帮助读者掌握最新版本的Python应用技巧,欢迎阅读和交流!
数据挖掘
14
2024-10-14
Web Data Mining数据挖掘技术与应用
Web 数据挖掘的百科全书级资源,内容真的是够全,够硬。Apriori 算法、PrefixSpan、监督学习、Web 爬虫,你想找的挖掘思路基本全能翻到。嗯,目录细,像我这种看文喜欢跳着看的人简直太友好了。
第 1 到 5 章是基础,讲了数据挖掘的各种算法,还配了实际应用的示例。Apriori怎么搞、支持向量机怎么调、聚类到底有哪些坑,讲得都挺透。你要是还不太熟这些概念,可以先从这部分啃起,慢慢来不着急。
第 6 章开始就进主菜了,Web 相关的部分真心精彩。像信息检索、搜索引擎的倒排索引、网页预,全都有。写得还挺贴地气,哪怕是非搜索专业的前端看也能懂。停用词移除、词干提取这些步骤讲得也挺细。
数据挖掘
0
2025-06-14
数据挖掘概述-挖掘任务分析报告-Data Mining Report-DSE
数据挖掘任务的分类挺实用的,型任务让你能快速看懂数据趋势,预测型则更像是拿水晶球未来。平时做数据或者建模的你,应该会经常遇到这两个方向,搞清楚区别,后面的算法选型才不容易踩坑。型的任务就是偏探索那挂的,比如看看用户年龄分布、产品销售走势,用的是统计图、聚类这些工具,嗯,能帮你快速摸清楚数据的底细。预测型任务就不一样了,更有挑战性,它需要你用历史数据去训练模型,做出判断,比如用Scikit-learn建个分类模型来预测客户流失,用RandomForestClassifier就蛮合适。推荐几个相关的资源,还不错:预测型数据实战:Scikit-learn 数据挖掘建模,代码清晰,思路也实用;还有用R
数据挖掘
0
2025-06-18
Python数据挖掘(9)决策树资源下载
在中,我们将详细介绍Python数据挖掘中决策树的应用及相关资源。决策树作为数据挖掘中的重要工具,通过结构化的节点与分支,帮助分析师理解和预测数据模式。为读者提供详尽的资源下载与实践指南,帮助他们快速掌握决策树的应用技巧与方法。
数据挖掘
10
2024-07-16
Data_Mining_课件_数据挖掘基础与应用
数据挖掘是一种从海量数据中提取出隐含的、以前未知的、潜在有价值的模式或信息的过程。这个过程通常涉及对大量数据的自动或半自动的探索和分析,发现有意义的结构和关系。随着互联网的发展、电子商务的繁荣以及各种传感器技术的进步,数据的收集和存储速度已经达到了前所未有的水平,每小时可以生成数GB甚至TB的数据。
在商业领域,数据挖掘被视为提高竞争力的关键工具。例如,在客户关系管理中,通过分析客户的购买行为、浏览历史等数据,企业能够提供更个性化、定制化的服务,从而获得竞争优势。此外,银行和信用卡交易的数据分析也有助于识别潜在的欺诈行为,保护消费者和企业的利益。科学角度来看,数据挖掘在处理如卫星遥感数据、天文
数据挖掘
13
2024-11-05