基于数据库的知识发现(KDD)是指从海量数据中提取有效、新颖、潜在有用、最终可理解模式的非平凡过程。
数据挖掘技术及应用
相关推荐
探索数据宝藏:数据挖掘技术及应用
数据如同一座蕴藏丰富宝藏的矿山,而数据挖掘技术则是我们开采这些宝藏的利器。它能够从海量数据中,精准识别、提取潜在价值信息,为决策提供有力支持。
数据挖掘
12
2024-05-28
数据挖掘系统结构及技术应用
数据挖掘系统结构主要包括:数据准备、数据挖掘、模型评估和结果部署。数据准备包括数据采集、清洗和转换。数据挖掘使用各种算法和技术从数据中提取有价值的知识和模式。模型评估对挖掘结果的准确性、有效性和适用性进行验证。结果部署将挖掘结果集成到业务流程中以获得洞察力。
算法与数据结构
20
2024-06-06
数据挖掘技术的算法比较及应用
Clementine、Darwin、Enterprise Miner、Intelligent Miner、PRW Scenario等算法在数据挖掘领域中各具特色,涵盖决策树、神经网络、回归分析、Radial Basis Functions、最近邻、最近均值、Kohonen Self-Organizing Maps等方法,以及聚类和关联规则的应用。
Hadoop
16
2024-07-16
立方体实例:数据挖掘技术及应用
电视在美国的年销售总额日期t产品t国家t和t电视t录像机t电脑1季度t2季度t3季度t4季度美国t加拿大t墨西哥和
数据挖掘
10
2024-05-25
数据挖掘技术及应用的ETL流程解析
数据挖掘技术及应用中,ETL流程是将转换/清洁后的数据加载到企业数据仓库的关键步骤。数据提取和转换/清洁完成后,选择合适的工具如Import、SQL Loader和SQL语言进行数据加载,同时编制和设计数据转换的函数库/子程序库以提升复用性。
数据挖掘
14
2024-08-21
数据挖掘技术及应用的评估与解释
模型验证是数据挖掘中的关键步骤。一旦建立好模型,就需要对其结果进行评估和解释。测试集的准确率只在建模阶段具有指导意义,在实际应用中,随着数据变化,模型的表现也会不同。然而,仅准确率并不足以全面评价模型的优劣,还需考虑错误类型及其可能带来的成本。此外,外部验证的重要性不可忽视。模型在理想条件下表现良好并不意味着在真实环境中也能如此,因为模型建立中的假设可能与实际情况不符。例如,在预测用户购买行为时,忽略通货膨胀可能导致预测失准,因此需要在实际应用中进行有效验证。
Hadoop
10
2024-07-15
商业数据挖掘技术的商业定义及应用
商业数据挖掘是一种新兴的商业信息处理技术,其核心在于从大规模商业数据库中提取、转换、分析和建模,以获取支持商业决策的关键数据。随着技术的不断发展,这种技术正在成为商业决策过程中不可或缺的一部分。
数据挖掘
16
2024-07-17
数据挖掘技术及其应用
ETL技术,即DTS SQL Server的数据转换服务(Data Transformation Services,简称DTS),提供了一套基于OLE DB的COM对象,利用VBScript、PerlScript或Microsoft Jscript脚本语言描述,用于创建数据转换程序,实现不同OLE DB数据源之间的数据转换操作。
算法与数据结构
12
2024-09-18
数据挖掘技术及其应用
这本由我校教师编著,并由顾冠群院士生前审阅的书籍,深入探讨了数据挖掘技术,及其在各个领域的应用。
数据挖掘
21
2024-05-28