-
通过明确的实例展示EM算法的工作原理
-
深入分析EM算法的机制,揭示其运作方式
EM算法详解
相关推荐
数据挖掘经典算法之EM详解
《数据挖掘中的十大算法》第四章深入探讨了EM算法,不同于简单的网络资料,内容详实,涵盖七个小节,共计32页。
数据挖掘
16
2024-07-16
数据挖掘中的EM算法详解
EM算法,全称期望最大化算法,是一种在统计学中广泛应用的优化算法,特别适用于处理含有隐藏变量的概率模型中的参数估计问题。在数据挖掘和机器学习领域,EM算法尤为重要,常用于数据聚类任务。其基本原理包括期望步(E-step)和最大化步(M-step),通过迭代的方式更新参数,直至收敛为止。为了更好地理解EM算法,可以从数学角度分析其期望值和最大似然估计的应用。
数据挖掘
6
2024-10-14
PLSA与EM算法探析
EM算法,即期望最大化算法,是一种迭代算法,用于统计学中寻找依赖于隐性变量的概率模型参数的最大似然估计。
算法与数据结构
13
2024-08-13
GMM聚类算法的贪心EM学习算法
该算法采用贪心策略结合EM算法,通过优化数据与模型的匹配度,寻找数据对GMM模型的最佳匹配,从而实现基于模型的聚类。
数据挖掘
19
2024-05-01
使用Matlab实现EM算法的方法
利用Matlab编写EM算法可以用于模式识别中的参数估计。
Matlab
17
2024-09-28
BKT视频评估em算法Matlab代码解析
此代码存储库包含用于进行BKT分析的Matlab代码,结合对可汗学院数据的观察,这些数据与“评估教育视频”文章中使用的数据格式相同。要运行分析,请从data_pipeline目录运行sample_pipeline.sh脚本,该脚本负责从原始日志格式解析日志并构建和训练BKT模型。要查看训练模型或结果,请在data_pipeline/analysis目录中启动Matlab并加载results.mat文件。该代码包括两个主要部分:第一个部分位于data_pipeline/scripts目录中,是用Python编写的预处理脚本,用于将原始数据转换为更易于使用的格式;第二个部分位于data_pipel
Matlab
11
2024-08-27
使用EM算法和Matlab实现HMM单高斯模型
在这个项目中,我们计划使用EM算法来训练针对孤立词数据的HMM模型,同时考虑Viterbi算法在测试阶段的应用。我们的实验结果显示,通过Matlab编程实现的性能与HTK相当。尽管尚未准备数据文件(.mfcc文件),但您可以根据自己的数据进行处理。如果需要,您可能需要修改“generate_trainingfile_list.m”和“generate_testingfile_list.m”中的代码以匹配数据文件的路径。请运行“EM_HMM_isolated_digit_main.m”来开始您的实验。如需更多信息,请在评论中留言。此外,您可以通过指定的链接免费获取数据文件:选择“隔离的TI数字培
Matlab
11
2024-08-05
使用Matlab实现EM算法的HMM分类器
该存储库包含一组Matlab代码,用于基于EM算法训练和测试多类隐马尔可夫模型分类器。这些代码已应用于情感动作识别和手势识别等连续观察领域。
Matlab
7
2024-08-28
EM算法求解高斯混合模型及Matlab实现
EM算法与高斯混合模型
本篇阐述了EM算法的原理, 并详解其在高斯混合模型参数估计中的应用。此外,我们提供了基于Matlab的代码实现,用于实际演示并评估算法性能。
EM算法原理
EM算法是一种迭代优化策略,用于含有隐变量的概率模型参数估计。其核心思想是在无法直接观测到所有变量的情况下,通过迭代地估计缺失信息来逐步逼近最大似然解。
算法流程包含两个步骤:
E步 (Expectation): 基于当前参数估计,计算缺失数据的期望。
M步 (Maximization): 利用E步得到的期望,更新模型参数,以最大化似然函数。
高斯混合模型
高斯混合模型是一种强大的概率模型,能够表示复杂的数据分
Matlab
12
2024-05-26