借助 JAX 示例代码,使用 Grok-1 开放权重模型。
Grok-1 训练模型示例
相关推荐
BANK-DATA分类模型训练示例Web数据挖掘实验PPT
训练 BANK-DATA 分类模型的 PPT 蛮适合用来入门做分类模型的同学,尤其是搞数据挖掘实验的。这份资源把每个字段都列得清楚,比如income、married这些属性值怎么用,直接就能上手建模型。
字段的解释挺细,比如pep这个目标变量,其实就是在判断客户有没有买 PEP(个人参股计划),挺典型的二分类问题,拿来喂模型训练效果还不错。像car、save_act这些 YES/NO 的字段,起来也简单,适合做个入门实验。
数据结构上也比较友好,数值型字段像age、income,分类型字段像region、sex,你可以顺手用LabelEncoder或者OneHotEncoder来。模型建起来之
数据挖掘
0
2025-06-22
FastGPT高效大模型训练框架
FastGPT-main 挺不错的一个开源项目,提升大模型的训练效率。如果你也在做大规模的 GPT 训练,应该会挺喜欢这个项目的。它基于 Transformer 架构,优化了并行计算和内存管理,能让你在有限的计算资源下高效训练大模型。通过并行计算优化,FastGPT 可以充分利用多 GPU 环境,减少训练时间。动态分块和自适应学习率调度的引入,使得模型训练更高效,也能确保模型精度不受影响。使用起来也挺,安装后按步骤配置数据集、选择模型大小就能开始训练了。如果你是自然语言的开发者,FastGPT 绝对是一个值得尝试的工具哦。
数据挖掘
0
2025-07-01
pyspark模型训练机制及Pipline使用
在python环境中,pyspark是处理大数据和进行分布式计算的重要工具。通过pyspark,可以利用Spark的强大功能进行机器学习模型的训练。使用Pipline,可以将数据处理和模型训练步骤串联起来,实现流程的自动化和简化。通过调整Pipline中的参数,可以优化模型的性能,从而提高预测的准确性。
spark
14
2024-07-12
matlab开发-物理模型学习动力训练教学
matlab开发-物理模型学习动力训练教学。方程式学生团队物理建模在线培训的动力系统建模(第4章)。
Matlab
17
2024-07-25
深度学习实验:环境配置、模型训练与应用
本实验报告涵盖五个深度学习实验,探索深度学习环境搭建、数据处理、模型构建与评估等关键环节。
实验一:深度学习环境配置
搭建深度学习实验环境,安装必要软件和库(如Python、TensorFlow、PyTorch等)。
测试环境配置,确保软硬件协同工作。
实验二:特征数据集制作和PR曲线
利用公开数据集或自行收集数据,进行数据清洗、特征提取和标注等预处理操作。
划分训练集、验证集和测试集,并生成PR曲线评估模型性能。
实验三:线性回归及拟合
构建线性回归模型,学习输入特征与目标变量之间的线性关系。
使用梯度下降等优化算法训练模型,并分析模型的拟合效果。
实验四:卷积神经网络应用
构
算法与数据结构
17
2024-06-22
基于训练集的数据挖掘算法模型详解
随着技术进步,我们利用数据挖掘算法基于以上训练集开发了详尽的模型。
数据挖掘
21
2024-07-15
matlabG(1,1)预测仿真模型的优化
G(1,1)预测的进一步优化
Matlab
15
2024-07-30
灰色预测MATLAB程序GM(1,1)模型
灰色预测的 MATLAB 程序真挺实用,尤其是用在那种数据点少、信息又不全的场景,效率还蛮高。用的是比较经典的 GM(1,1) 模型,逻辑也清晰,整个结构看着舒服,适合想快速上手灰色建模的朋友。
程序用 MATLAB 写的,核心逻辑就是先做个累加,把原始序列转换一下,搞个微分方程建模。整体上就是从原始数据出发,推一个趋势出来。适合做短期预测,比如销量、能耗这种不太规律的东西。
你只要丢一个数列进去,比如 [5 6 8 10],程序就能自动给你把模型参数都算好。像 afor 和 ufor 这俩参数,是用最小二乘法估出来的,精度还不错。
后面会根据模型公式算出一个平滑的预测序列,用 exp 来拟合
算法与数据结构
0
2025-07-05
公平的席位分配优化模型-离散模型(1)
公平的席位分配优化模型MF法:最大剩余法(GR)实际上解决了以下优化问题:你能证明这些结论吗?任意lt范数(t≥1),如:1, 2, ∞范数EP法:
Matlab
19
2024-08-14